English
Language : 

NSR060A0X_10 Datasheet, PDF (15/18 Pages) Lineage Power Corporation – Naos Raptor 60A: Non-Isolated Power Modules
Data Sheet
December 6, 2010
Naos Raptor 60A: Non Isolated Power Modules
5 – 13.8Vdc input; 0.6Vdc to 5.0Vdc Output; 60A output current
Thermal Considerations
Power modules operate in a variety of thermal
environments; however sufficient cooling should
always be provided to help ensure reliable operation.
Considerations include ambient temperature, airflow,
module power dissipation, and the need for increased
reliability. A reduction in the operating temperature of
the module will result in an increase in reliability. The
thermal data presented here is based on physical
measurements taken in a wind tunnel. The test set-
up is shown in Figure 44. The derating data applies
to airflow in either direction of the module’s axis.
Wind Tunnel
PWBs
50.8
[2.00]
Power Module
76.2
[3.0]
7.24
[0.285]
Probe Location
for measuring
airflow and
ambient
temperature
Air
Flow
Figure 44. Thermal Test Set-up.
Figure 45. Temperature measurement locations
Tref1 and Tref2.
The thermal reference points, Tref1 and Tref2 used in
the specifications are shown in Figure 45. For reliable
operation this temperatures should not exceed 120ºC.
The output power of the module should not exceed
the rated power of the module (Vo,set x Io,max).
Please refer to the Application Note “Thermal
Characterization Process For Open-Frame Board-
Mounted Power Modules” for a detailed discussion of
thermal aspects including maximum device
temperatures.
Heat Transfer via Convection
Increased airflow over the module enhances the heat
transfer via convection. Thermal derating curves
showing the maximum output current that can be
delivered at different local ambient temperatures (TA)
for airflow conditions ranging from natural convection
and up to 2m/s (400 ft./min) are shown in the
Characteristics Curves section.
Post solder Cleaning and Drying
Considerations
Post solder cleaning is usually the final circuit-board
assembly process prior to electrical board testing. The
result of inadequate cleaning and drying can affect
both the reliability of a power module and the
testability of the finished circuit-board assembly. For
guidance on appropriate soldering, cleaning and
drying procedures, refer to the Board Mounted Power
Modules: Soldering and Cleaning Application Note.
Through-Hole Lead-Free Soldering
Information
The RoHS-compliant through-hole products use the
SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant
components. They are designed to be processed
through single or dual wave soldering machines. The
pins have an RoHS-compliant finish that is compatible
with both Pb and Pb-free wave soldering processes.
A maximum preheat rate of 3°C/s is suggested. The
wave preheat process should be such that the
temperature of the power module board is kept below
210°C. For Pb solder, the recommended pot
temperature is 260°C, while the Pb-free solder pot is
270°C max. Not all RoHS-compliant through-hole
products can be processed with paste-through-hole
Pb or Pb-free reflow process. If additional information
is needed, please consult with your Lineage Power
representative for more details.
LINEAGE POWER
15