English
Language : 

JC050C1 Datasheet, PDF (13/16 Pages) Lineage Power Corporation – Distributed power architectures
Data Sheet
March 2008
JC050C, JC075C, JC100C Power Modules: dc-dc Converters;
18 Vdc to 36 Vdc Input, 15 Vdc Output; 50 W to 100 W
Thermal considerations (continued)
Heat Transfer with Heat Sinks (continued)
Solution
Given: VI = 28 V
IO = 6 A
TA = 40 °C
TC = 85 °C
Heat sink = 0.5 in.
Determine PD by using Figure 23:
PD = 14.0 W
Then solve the following equation:
θca = -(--T----C--P--–---D--T----A---)-
θca =
(---8---5-----–-----4---0----)
14.0
θca = 3.2 °C/W
Use Figure 24 to determine air velocity for the0.5 inch
heat sink.
The minimum airflow necessary for the JC100C
module is 1.0 m/s (200 ft./min.).
Custom Heat Sinks
A more detailed model can be used to determine the
required thermal resistance of a heat sink to provide
necessary cooling. The total module resistance can be
separated into a resistance from case-to-sink (θcs) and
sink-to-ambient (θsa) shown below (Figure 25).
TC
TS
TA
PD →
θcs
θsa
8-1304
Figure 25. Resistance from Case-to-Sink and
Sink-to-Ambient
For a managed interface using thermal grease or foils,
a value of θcs = 0.1 °C/W to 0.3 °C/W is typical. The
solution for heat sink resistance is:
θsa = (---T----C--P---–--D--T----A----) – θcs
This equation assumes that all dissipated power must
be shed by the heat sink. Depending on the user-
defined application environment, a more accurate
model, including heat transfer from the sides and bot-
tom of the module, can be used. This equation pro-
vides a conservative estimate for such instances.
Layout Considerations
Copper paths must not be routed beneath the power
module mounting inserts.
Lineage Power
13