English
Language : 

CPC7591_12 Datasheet, PDF (13/17 Pages) IXYS Corporation – Line Card Access Switch
INTEGRATED CIRCUITS DIVISION
CPC7591
2.4 Data Latch
The CPC7591 has an integrated transparent data
latch. The latch enable operation is controlled by TTL
logic input levels at the LATCH pin. Data input to the
latch is via the input pin INRINGING, while the output of
the data latch are internal nodes used for state control.
When the LATCH enable control pin is at logic 0 the
data latch is transparent and the INRINGING input data
control signal flows directly through the data latch to
the state control circuitry. A change in INRINGING input
will be reflected by a change in switch state.
Whenever the LATCH enable control pin is at logic 1,
the data latch is active and data is locked. Subsequent
INRINGING input changes will not result in a change to
the control logic or affect the existing switch state.
The switches will remain in the state they were in
when the LATCH pin changes from logic 0 to logic 1
and will not respond to changes in input as long as the
LATCH is at logic 1. However, neither the TSD input
nor the TSD output control functions are affected by
the latch function. Since internal thermal shutdown
control and external “All-off” control is not affected by
the state of the LATCH enable input, TSD will override
state control.
2.5 TSD Pin Description
The TSD pin is a bi-directional I/O structure with an
internal pull-up current source with a nominal value of
16 A biased from VDD.
As an output, this pin indicates the status of the
thermal shutdown circuitry. Typically, during normal
operation, this pin will be pulled up to VDD but under
fault conditions that create excess thermal loading the
CPC7591 will enter thermal shutdown and a logic low
will be output.
As an input, the TSD pin is utilized to place the
CPC7591 into the “All-Off” state by simply pulling the
input low. For applications using low-voltage logic
devices (lower than VDD), IXYS IC Division
recommends the use of an open-collector or an
open-drain type output to control TSD. This avoids
sinking the TSD pull up bias current to ground during
normal operation when the all-off state is not required.
An open-collector or open-drain type device is
recommended to drive this pin.
2.6 Ringing Switch Zero-Cross Current Turn Off
After the application of a logic input to turn SW4 off,
the ringing switch is designed to delay the change in
state until the next zero-crossing. Once on, the switch
requires a zero-current cross to turn off, and therefore
should not be used to switch a pure DC signal. The
switch will remain in the on state no matter the logic
input until the next zero crossing. These switching
characteristics will reduce and possibly eliminate
overall system impulse noise normally associated with
ringing switches. See IXYS IC Division’s application
note AN-144, Impulse Noise Benefits of Line Card Access
Switches for more information. The attributes of ringing
switch SW4 may make it possible to eliminate the
need for a zero-cross switching scheme. A minimum
impedance of 300 in series with the ringing
generator is recommended.
2.7 Power Supplies
Both a +5 V supply and battery voltage are connected
to the CPC7591. Switch state control is powered
exclusively by the +5 V supply. As a result, the
CPC7591 exhibits extremely low power consumption
during active and idle states.
Although battery power is not used for switch control, it
is required to supply trigger current for the integrated
internal protection circuitry SCR during fault
conditions. This integrated SCR is designed to
activate whenever the voltage at TBAT or RBAT drops 2
to 4 V below the applied voltage on the VBAT pin.
Because the battery supply at this pin is required to
source trigger current during negative overvoltage
fault conditions at tip and ring, it is important that the
net supplying this current be a low impedance path for
high speed transients such as lightning. This will
permit trigger currents to flow enabling the SCR to
activate and thereby prevent a fault induced negative
overvoltage event at the TBAT or RBAT nodes.
2.8 Battery Voltage Monitor
The CPC7591 also uses the VBAT pin to monitor
battery voltage. If system battery voltage is lost, the
CPC7591 immediately enters the all-off state. It
remains in this state until the battery voltage is
restored. The device also enters the all-off state if the
system battery voltage goes more positive than –10 V,
R06
www.ixysic.com
13