English
Language : 

IRF6712SPBF_09 Datasheet, PDF (1/9 Pages) International Rectifier – DirectFET Power MOSFET
PD - 97273F
IRF6712SPbF
IRF6712STRPbF
l RoHS Compliant and Halogen Free 
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible 
l Ultra Low Package Inductance
l Optimized for High Frequency Switching 
l Ideal for CPU Core DC-DC Converters
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
25V max ±20V max 3.8mΩ@ 10V 6.7mΩ@ 4.5V
Qg tot Qgd Qgs2
Qrr
Qoss Vgs(th)
12nC 4.0nC 1.7nC 14nC 10nC 1.9V
l Optimized for both Sync.FET and some Control FET
application
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques 
l 100% Rg tested
SQ
DirectFET™ ISOMETRIC
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MP
Description
The IRF6712SPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET pack-
age allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6712SPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6712SPbF has been optimized for parameters that are critical in synchronous buck
operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Gate-to-Source Voltage
e Continuous Drain Current, VGS @ 10V
e Continuous Drain Current, VGS @ 10V
f Continuous Drain Current, VGS @ 10V
g Pulsed Drain Current
h Single Pulse Avalanche Energy
Ãg Avalanche Current
Max.
25
±20
17
13
68
130
13
13
Units
V
A
mJ
A
12
10
ID = 17A
8
6
TJ = 125°C
4
2
TJ = 25°C
0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
VGS, Gate -to -Source Voltage (V)
Notes:
Fig 1. Typical On-Resistance Vs. Gate Voltage
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
14.0
12.0 ID= 13A
10.0
VDS= 20V
VDS= 13V
8.0
6.0
4.0
2.0
0.0
0
5 10 15 20 25 30 35
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.14mH, RG = 25Ω, IAS = 13A.
1
04/29/09