English
Language : 

ISL78302 Datasheet, PDF (9/11 Pages) Intersil Corporation – Dual LDO with Low Noise, High Performance and Low IQ
ISL78302
Functional Description
The ISL78302 contains two high performance LDOs. High
performance is achieved through a circuit that delivers fast
transient response to varying load conditions. In a quiescent
condition, the ISL78302 adjusts its biasing to achieve the lowest
standby current consumption.
The device also integrates current limit protection, smart thermal
shutdown protection, staged turn-on and soft-start. Smart
thermal shutdown protects the device against overheating.
Staged turn-on and soft-start minimize start-up input current
surges without causing excessive device turn-on time.
Power Control
The ISL78302 has two separate enable pins (EN1 and EN2) to
individually control power to each of the LDO outputs. When both
EN1 and EN2 are low, the device is in shutdown mode. During
this condition, all on-chip circuits are off, and the device draws
minimum current, typically less than 0.5µA.
When one or both of the enable pins is asserted, the device first
polls the output of the UVLO detector to ensure that VIN voltage is
at least about 2.1V. Once verified, the device initiates a start-up
sequence. During the start-up sequence, trim settings are first
read and latched. Then, sequentially, the bandgap, reference
voltage and current generation circuitry power-up. Once the
references are stable, a fast-start circuit quickly charges the
external reference bypass capacitor (connected to the CBYP pin)
to the proper operating voltage. After the bypass capacitor has
been charged, the LDOs power-up in their specified sequence.
Soft-start circuitry integrated into each LDO limits the initial
ramp-up rate to about 30µs/V to minimize current surge.
If EN1 is brought high and EN2 goes high before the VO1 output
stabilizes, the ISL78302 delays the VO2 turn-on until the VO1
output reaches its target level.
If EN2 is brought high and EN1 goes high before VO2 starts its
output ramp, then VO1 turns on first and, the ISL78302 delays
the VO2 turn-on until the VO1 output reaches its target level.
If EN2 is brought high and EN1 goes high after VO2 starts its
output ramp, then the ISL78302 immediately starts to ramp up
the VO1 output.
If both EN1 and EN2 are brought high at the same time, the VO1
output has priority and is always powered up first.
During operation, whenever the VIN voltage drops below 1.8V,
the ISL78302 immediately disables both LDO outputs. When VIN
rises back above 2.1V, the device re-initiates its start-up
sequence, and LDO operation will resume automatically.
Reference Generation
The reference generation circuitry includes a trimmed bandgap,
a trimmed voltage reference divider, a trimmed current reference
generator, and an RC noise filter. The filter includes the external
capacitor connected to the CBYP pin. A 0.01µF (capacitor
connected CBYP) implements a 100Hz lowpass filter and is
recommended for most high-performance applications.
Capacitor values above 0.01µF are not recommended for the
CBYP pin.
The bandgap generates a zero temperature coefficient (TC)
voltage for the reference divider. The reference divider provides
the regulation reference, POR detection thresholds, and other
voltage references required for current generation and
over-temperature detection.
The current generator provides the references required for
adaptive biasing as well as references for LDO output current
limit and thermal shutdown determination.
LDO Regulation and Programmable Output
Divider
The LDO regulator is implemented with a high-gain operational
amplifier driving a PMOS pass transistor. The design of the
ISL78302 provides a regulator that has low quiescent current, fast
transient response, and overall stability across all operating and
load current conditions. LDO stability is guaranteed for a 1µF to
10µF output capacitor that has a tolerance better than 20% and an
ESR less than 200mΩ. The design is performance-optimized for a
1µF capacitor. Unless limited by the application, use of an output
capacitor value above 4.7µF is not normally needed, as LDO
performance improvement is minimal.
Each LDO uses an independently trimmed 1V reference. An
internal resistor divider drops the LDO output voltage down to 1V.
This is compared to the 1V reference for regulation. The resistor
division ratio is programmed in the factory to the output voltages
of 1.2V, 1.5V, 1.8V, 2.5V and 3.3V.
Power-On Reset Generation
Each LDO has a separate Power-on Reset signal generation
circuit, which outputs to the respective POR pins. The POR signal
is generated as follows.
A POR comparator continuously monitors the output of each
LDO. The LDO enters a power-good state when the output voltage
is above 94% of the expected output voltage for a period
exceeding the LDO PGOOD entry delay time. In the power-good
state, the open-drain PORx output is in a high-impedance state.
An internal 100kΩ pull-up resistor pulls the pin up to the
respective LDO output voltage. An external resistor can be added
between the PORx output and the LDO output for a faster rise
time; however, the PORx output should not connect through an
external resistor to a supply greater than the associated LDO
voltage.
The power-good state is exited when the LDO output falls below
90% of the expected output voltage for a period longer than the
PGOOD exit delay time. While power-good is false, the ISL78302
pulls the respective POR pin low.
For LDO-1, the PGOOD entry delay time is fixed at about 2ms,
while the PGOOD exit delay is about 25µs. For LDO-2, the PGOOD
entry and exit delays are determined by the value of the external
capacitor connected to the CPOR pin. For a 0.01µF capacitor, the
entry and exit delays are 200ms and 25µs, respectively. Larger
or smaller capacitor values will yield proportionately longer or
shorter delay times. The POR exit delay should never be allowed
to be less than 10µs to ensure sufficient immunity against
transient induced false POR triggering.
9
FN7696.0
January 28, 2011