English
Language : 

ICL3225E_06 Datasheet, PDF (8/20 Pages) Intersil Corporation – ±15kV ESD Protected, +3V to +5.5V, 1Microamp, 1Mbps, RS-232 Transceivers with Enhanced Automatic Powerdown
ICL3225E, ICL3227E, ICL3245E
Detailed Description
These ICL32XXE interface ICs operate from a single +3V to
+5.5V supply, guarantee a 1Mbps minimum data rate,
require only four small external 0.1µF capacitors, feature low
power consumption, and meet all ElA RS-232C and V.28
specifications. The circuit is divided into three sections: The
charge pump, the transmitters, and the receivers.
Charge-Pump
Intersil’s new ICL32XXE family utilizes regulated on-chip
dual charge pumps as voltage doublers, and voltage
inverters to generate ±5.5V transmitter supplies from a VCC
supply as low as 3.0V. This allows these devices to maintain
RS-232 compliant output levels over the ±10% tolerance
range of 3.3V powered systems. The efficient on-chip power
supplies require only four small, external 0.1µF capacitors
for the voltage doubler and inverter functions at VCC = 3.3V.
See the “Capacitor Selection” section, and Table 3 for
capacitor recommendations for other operating conditions.
The charge pumps operate discontinuously (i.e., they turn off
as soon as the V+ and V- supplies are pumped up to the
nominal values), resulting in significant power savings.
Transmitters
The transmitters are proprietary, low dropout, inverting
drivers that translate TTL/CMOS inputs to EIA/TIA-232
output levels. Coupled with the on-chip ±5.5V supplies,
these transmitters deliver true RS-232 levels over a wide
range of single supply system voltages.
Transmitter outputs disable and assume a high impedance
state when the device enters the powerdown mode (see
Table 2). These outputs may be driven to ±12V when
disabled.
All devices guarantee a 1Mbps data rate for full load
conditions (3kΩ and 250pF), VCC ≥ 3.0V, with one
transmitter operating at full speed. Under more typical
conditions of VCC ≥ 3.3V, RL = 3kΩ, and CL = 250pF, one
transmitter easily operates at 1.4Mbps. Transmitter skew is
extremely low on these devices, and is specified at the
receiver input trip points (1.4V), rather than the arbitrary 0V
crossing point typical of other RS-232 families.
Transmitter inputs float if left unconnected, and may cause
ICC increases. Connect unused inputs to GND for the best
performance.
Receivers
All the ICL32XXE devices contain standard inverting
receivers, but only the ICL3245E receivers can tristate, via
the FORCEOFF control line. Additionally, the ICL3245E
includes a noninverting (monitor) receiver (denoted by the
ROUTB label) that is always active, regardless of the state of
any control lines. Both receiver types convert RS-232
signals to CMOS output levels and accept inputs up to ±25V
while presenting the required 3kΩ to 7kΩ input impedance
(see Figure 1) even if the power is off (VCC = 0V). The
8
receivers’ Schmitt trigger input stage uses hysteresis to
increase noise immunity and decrease errors due to slow
input signal transitions.
The ICL3245E inverting receivers disable during forced
(manual) powerdown, but not during automatic powerdown
(see Table 2). Conversely, the monitor receiver remains
active even during manual powerdown making it extremely
useful for Ring Indicator monitoring. Standard receivers
driving powered down peripherals must be disabled to
prevent current flow through the peripheral’s protection
diodes (see Figures 2 and 3). This renders them useless for
wake up functions, but the corresponding monitor receiver
can be dedicated to this task as shown in Figure 3.
VCC
RXIN
-25V ≤ VRIN ≤ +25V 5kΩ
GND
RXOUT
GND ≤ VROUT ≤ VCC
FIGURE 1. INVERTING RECEIVER CONNECTIONS
VCC
VCC
VCC
CURRENT
FLOW
POWERED
DOWN
UART
GND
VOUT = VCC
Rx
Tx
SHDN = GND
OLD
RS-232 CHIP
FIGURE 2. POWER DRAIN THROUGH POWERED DOWN
PERIPHERAL
VCC
TRANSITION
DETECTOR
TO
WAKE-UP
LOGIC
VCC
R2OUTB
RX
POWERED
DOWN
UART
TX
VOUT = HI-Z
R2OUT
T1IN
FORCEOFF = GND
ICL3245E
R2IN
T1OUT
FIGURE 3. DISABLED RECEIVERS PREVENT POWER DRAIN
FN4900.9
February 27, 2006