English
Language : 

ISL6625A_14 Datasheet, PDF (7/10 Pages) Intersil Corporation – Synchronous Rectified Buck MOSFET Drivers
ISL6625A
.
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2 20nC
QUGATE = 100nC
50nC
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
DVBOOT_CAP (V)
FIGURE 3. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE VOLTAGE
Power Dissipation
Package power dissipation is mainly a function of the switching
frequency (FSW), the output drive impedance, the layout
resistance, and the selected MOSFET’s internal gate resistance
and total gate charge (QG). Calculating the power dissipation in the
driver for a desired application is critical to ensure safe operation.
Exceeding the maximum allowable power dissipation level may
push the IC beyond the maximum recommended operating
junction temperature. The DFN package is more suitable for high
frequency applications. See “Layout Considerations” on page 8
for thermal impedance improvement suggestions. The total gate
drive power losses due to the gate charge of MOSFETs and the
driver’s internal circuitry and their corresponding average driver
current can be estimated using Equations 2 and 3, respectively:
PQg_TOT = PQg_Q1 + PQg_Q2 + IQ • VCC
P Q g _Q1
=
Q-----G-----1----•-----U----V-----C-----C----2--
VGS1
•
FS
W
•
NQ
1
PQ g _Q2
=
Q-----G-----2----•-----L---V-----C-----C----2--
VGS2
•
FSW
•
NQ2
(EQ. 2)
IDR
=
⎛
⎜
⎝
Q-----G-----1----•-----U----V-----C-----C------•----N----Q-----1-
VGS1
+
-Q----G-----2----•-----LV---V--G---C-S----C2------•----N----Q-----2-⎠⎟⎞
• FSW + IQ
(EQ. 3)
Where the gate charge (QG1 and QG2) is defined at a particular
gate to source voltage (VGS1 and VGS2) in the corresponding
MOSFET datasheet; IQ is the driver’s total quiescent current with
no load at both drive outputs; NQ1 and NQ2 are number of upper
and lower MOSFETs, respectively; UVCC and LVCC are the drive
voltages for both upper and lower FETs, respectively. The IQ*VCC
product is the quiescent power of the driver without a load.
The total gate drive power losses are dissipated among the
resistive components along the transition path, as outlined in
Equation 4. The drive resistance dissipates a portion of the total
gate drive power losses, the rest will be dissipated by the external
gate resistors (RG1 and RG2) and the internal gate resistors (RGI1
and RGI2) of MOSFETs. Figures 4 and 5 show the typical upper and
lower gate drives turn-on current paths.
PDR = PDR_UP + PDR_LOW + IQ • VCC
P D R _UP
=
⎛
⎜
⎝
-------------R-----H----I--1--------------
RHI1 + REXT1
+
-R----L---O-----1R----+-L---O-R----1-E----X----T---1- ⎠⎟⎞
•
P-----Q----g----_--Q-----1-
2
P D R _LOW
=
⎛
⎜
⎝
-------------R-----H----I--2--------------
RHI2 + REXT2
+
R-----L---O-----2R----+-L---O-R----2-E----X----T---2- ⎠⎟⎞
•
P-----Q----g----_--Q-----2-
2
REXT1
=
RG
1
+
R-----G-----I-1--
NQ1
REXT2
=
RG
2
+
R-----G-----I-2--
NQ2
(EQ. 4)
VCC
BOOT
D
RHI1
RLO1
PHASE
CGD
G
RG1
RGI1
CGS
S
CDS
Q1
FIGURE 4. TYPICAL UPPER-GATE DRIVE TURN-ON PATH
LVCC
RHI2
RLO2
CGD
G
RG2
RGI2
CGS
S
D
CDS
Q2
FIGURE 5. TYPICAL LOWER-GATE DRIVE TURN-ON PATH
7
FN7978.0
September 19, 2012