English
Language : 

ISL6522_06 Datasheet, PDF (7/15 Pages) Intersil Corporation – Buck and Synchronous Rectifier Pulse-Width Modulator (PWM) Controller
ISL6522
VOLTAGE
VSOFT START
VOUT
VOSC(MIN)
VCOMP
CLAMP ON VCOMP RELEASED AT
STEADY STATE
t0
t1
t2
TIME
t1
=
C-----S----S--
ISS
⋅
VO
S
C
(
M
IN
)
tSoftStart
=
t2 – t1
=
-C----S----S--
ISS
⋅
-V----O----U----T----S----t--e---a---d----y---S----t-a----t--e-
VIN
⋅
∆
VO
S
C
Where:
CSS = Soft Start Capacitor
ISS = Soft Start Current = 10µA
VOSC(MIN) = Bottom of Oscillator = 1.35V
VIN = Input Voltage
∆VOSC = Peak to Peak Oscillator Voltage = 1.9V
VOUTSteadyState = Steady State Output Voltage
FIGURE 3. SOFT-START INTERVAL
4V
2V
0V
15A
10A
5A
0A
TIME (20ms/DIV)
FIGURE 4. OVERCURRENT OPERATION
Overcurrent Protection
The overcurrent function protects the converter from a
shorted output by using the upper MOSFETs on-resistance,
rDS(ON) to monitor the current. This method enhances the
converter’s efficiency and reduces cost by eliminating a
current sensing resistor.
The overcurrent function cycles the soft-start function in a
hiccup mode to provide fault protection. A resistor (ROCSET)
programs the overcurrent trip level. An internal 200µA
(typical) current sink develops a voltage across ROCSET that
7
is reference to VIN. When the voltage across the upper
MOSFET (also referenced to VIN) exceeds the voltage
across ROCSET, the overcurrent function initiates a soft-start
sequence. The soft-start function discharges CSS with a
10µA current sink and inhibits PWM operation. The soft-start
function recharges CSS, and PWM operation resumes with
the error amplifier clamped to the SS voltage. Should an
overload occur while recharging CSS, the soft-start function
inhibits PWM operation while fully charging CSS to 4V to
complete its cycle. Figure 4 shows this operation with an
overload condition. Note that the inductor current increases
to over 15A during the CSS charging interval and causes an
overcurrent trip. The converter dissipates very little power
with this method. The measured input power for the
conditions of Figure 4 is 2.5W.
The overcurrent function will trip at a peak inductor current
(IPEAK) determined by:
IPEAK
=
I--O-----C----S----E----T-----•----R----O-----C----S----E----T--
rDS(ON)
where IOCSET is the internal OCSET current source (200µA
is typical). The OC trip point varies mainly due to the
MOSFETs rDS(ON) variations. To avoid overcurrent tripping
in the normal operating load range, find the ROCSET resistor
from the equation above with:
The maximum rDS(ON) at the highest junction temperature.
1. The minimum IOCSET from the specification table.
2. Determine IPEAK for IPEAK > IOUT(MAX) + (∆I) ⁄ 2 ,
where ∆I is the output inductor ripple current.
For an equation for the ripple current see the section under
component guidelines titled Output Inductor Selection.
A small ceramic capacitor should be placed in parallel with
ROCSET to smooth the voltage across ROCSET in the
presence of switching noise on the input voltage.
Current Sinking
The ISL6522 incorporates a MOSFET shoot-through
protection method which allows a converter to sink current
as well as source current. Care should be exercised when
designing a converter with the ISL6522 when it is known that
the converter may sink current.
When the converter is sinking current, it is behaving as a boost
converter that is regulating its input voltage. This means that
the converter is boosting current into the VIN rail, the voltage
that is being down-converted. If there is nowhere for this current
to go, such as to other distributed loads on the VIN rail, through
a voltage limiting protection device, or other methods, the
capacitance on the VIN bus will absorb the current. This
situation will cause the voltage level of the VIN rail to increase. If
the voltage level of the rail is boosted to a level that exceeds the
maximum voltage rating of the MOSFETs or the input
capacitors, damage may occur to these parts. If the bias
voltage for the ISL6522 comes from the VIN rail, then the
FN9030.8
March 10, 2006