English
Language : 

ISL6334D Datasheet, PDF (25/28 Pages) Intersil Corporation – VR11.1, 4-Phase PWM Controller with Phase Dropping, Droop Disabled and Load Current Monitoring Features
ISL6334D
value. The capacitors selected must have sufficiently low ESL
and ESR so that the total output-voltage deviation is less than
the allowable maximum. Neglecting the contribution of inductor
current and regulator response, the output voltage initially
deviates by an amount, as shown in Equation 30:
V ≈ (ESL) -d---i + (ESR) ΔI
dt
(EQ. 30)
The filter capacitor must have sufficiently low ESL and ESR
so that ΔV < ΔVMAX.
Most capacitor solutions rely on a mixture of high-frequency
capacitors with relatively low capacitance in combination
with bulk capacitors having high capacitance but limited
high-frequency performance. Minimizing the ESL of the
high-frequency capacitors allows them to support the output
voltage as the current increases. Minimizing the ESR of the
bulk capacitors allows them to supply the increased current
with less output voltage deviation.
The ESR of the bulk capacitors also creates the majority of
the output-voltage ripple. As the bulk capacitors sink and
source the inductor AC ripple current (see “Interleaving” on
page 10 and Equation 2), a voltage develops across the
bulk-capacitor ESR equal to IC,PP (ESR). Thus, once the
output capacitors are selected, the maximum allowable
ripple voltage, VP-P(MAX), determines the lower limit on the
inductance, as shown in Equation 31.
L
≥
(ESR)
⎛
⎝
VI
N
–
N
VO
U
⎞
T⎠
VO
U
T
-----------------------------------------------------------
f S VI N VP-P( M A X )
(EQ. 31)
Since the capacitors are supplying a decreasing portion of
the load current while the regulator recovers from the
transient, the capacitor voltage becomes slightly depleted.
The output inductors must be capable of assuming the entire
load current before the output voltage decreases more than
ΔVMAX. This places an upper limit on inductance.
Equation 32 gives the upper limit on L for the cases when
the trailing edge of the current transient causes a greater
output-voltage deviation than the leading edge. Equation 33
addresses the leading edge. Normally, the trailing edge
dictates the selection of L because duty cycles are usually
less than 50%. Nevertheless, both inequalities should be
evaluated, and L should be selected based on the lower of
the two results. In each equation, L is the per-channel
inductance, C is the total output capacitance, and N is the
number of active channels.
L ≤ -2---N-----C-----V----O---
(ΔI)2
ΔVMAX – ΔI(ESR)
(EQ. 32)
L ≤ -(--1---.--2---5----)---N----C---
(ΔI)2
ΔVMAX – ΔI(ESR)
⎛
⎝
VIN
–
VO⎠⎞
(EQ. 33)
Switching Frequency Selection
There are a number of variables to consider when choosing
the switching frequency, as there are considerable effects on
the upper MOSFET loss calculation. These effects are
outlined in “MOSFETs” on page 23, and they establish the
upper limit for the switching frequency. The lower limit is
established by the requirement for fast transient response
and small output-voltage ripple as outlined in “Output Filter
Design” on page 24. Choose the lowest switching frequency
that allows the regulator to meet the transient-response
requirements.
Input Capacitor Selection
The input capacitors are responsible for sourcing the AC
component of the input current flowing into the upper
MOSFETs. Their RMS current capacity must be sufficient to
handle the AC component of the current drawn by the upper
MOSFETs, which is related to duty cycle and the number of
active phases.
0.3
0.2
0.1
IL(P-P) = 0
IL(P-P) = 0.5 IO
IL(P-P) = 0.75 IO
0
0
0.2
0.4
0.6
0.8
1.0
DUTY CYCLE (VO/VIN)
FIGURE 18. NORMALIZED INPUT-CAPACITOR RMS CURRENT
vs DUTY CYCLE FOR 2-PHASE CONVERTER
0.3
IL(P-P) = 0
IL(P-P) = 0.25 IO
0.2
IL(P-P) = 0.5 IO
IL(P-P) = 0.75 IO
0.1
0
0
0.2
0.4
0.6
0.8
1.0
DUTY CYCLE (VO/VIN)
FIGURE 19. NORMALIZED INPUT-CAPACITOR RMS CURRENT
vs DUTY CYCLE FOR 3-PHASE CONVERTER
25
FN6802.2
August 31, 2010