English
Language : 

HC5523_03 Datasheet, PDF (16/22 Pages) Intersil Corporation – LSSGR/TR57 CO/Loop Carrier SLIC with Low Power Standby
HC5523
longitudinal balance drops below 45dB. DET pin remains low
(no false detection).
5. Longitudinal Current Limit (On-Hook Standby) - On-Hook
(Active, C1 = 1, C2 = 1) longitudinal current limit is determined
by increasing the amplitude of EL (Figure 3B) until the 2-wire
longitudinal balance drops below 45dB. DET pin remains high
(no false detection).
6. Longitudinal to Metallic Balance - The longitudinal to metal-
lic balance is computed using the following equation:
BLME = 20 • log (EL/VTR), where: EL and VTR are defined in
Figure 4.
7. Metallic to Longitudinal FCC Part 68, Para 68.310 - The
metallic to longitudinal balance is defined in this spec.
8. Longitudinal to Four-Wire Balance - The longitudinal to 4-wire
balance is computed using the following equation:
BLFE = 20 • log (EL/VTX),: EL and VTX are defined in Figure 4.
9. Metallic to Longitudinal Balance - The metallic to longitudi-
nal balance is computed using the following equation:
BMLE = 20 • log (ETR/VL), ERX = 0
where: ETR, VL and ERX are defined in Figure 5.
10. Four-Wire to Longitudinal Balance - The 4-wire to longitudi-
nal balance is computed using the following equation:
BFLE = 20 • log (ERX/VL), ETR = source is removed.
where: ERX, VL and ETR are defined in Figure 5.
11. Two-Wire Return Loss - The 2-wire return loss is computed
using the following equation:
r = -20 • log (2VM/VS)
where: ZD = The desired impedance; e.g., the characteristic
impedance of the line, nominally 600Ω. (Reference Figure 6).
12. Overload Level (4-Wire port) - The overload level is specified
at the 4-wire transmit port (VTXO) with the signal source (EG) at
the 2-wire port, IDCMET = 23mA, ZL = 20kΩ, RSG = 4kΩ (Refer-
ence Figure 7). Increase the amplitude of EG until 1% THD is
measured at VTXO. Note that the gain from the 2-wire port to
the 4-wire port is equal to 1.
13. Output Offset Voltage - The output offset voltage is specified
with the following conditions: EG = 0, IDCMET = 23mA, ZL = ∞
and is measured at VTX. EG, IDCMET, VTX and ZL are defined
in Figure 7. Note: IDCMET is established with a series 600Ω
resistor between tip and ring.
14. Two-Wire to Four-Wire (Metallic to VTX) Voltage Gain - The
2-wire to 4-wire (metallic to VTX) voltage gain is computed
using the following equation.
G2-4 = (VTX/VTR), EG = 0dBm0, VTX, VTR, and EG are defined
in Figure 7.
15. Current Gain RSN to Metallic - The current gain RSN to
Metallic is computed using the following equation:
K = IM [(RDC1 + RDC2)/(VRDC - VRSN)] K, IM, RDC1, RDC2, VRDC
and VRSN are defined in Figure 8.
16. Two-Wire to Four-Wire Frequency Response - The 2-wire to
4-wire frequency response is measured with respect to
EG = 0dBm at 1.0kHz, ERX = 0V, IDCMET = 23mA. The fre-
quency response is computed using the following equation:
F2-4 = 20 • log (VTX/VTR), vary frequency from 300Hz to
3.4kHz and compare to 1kHz reading.
VTX, VTR, and EG are defined in Figure 9.
17. Four-Wire to Two-Wire Frequency Response - The 4-wire to
2-wire frequency response is measured with respect to ERX =
0dBm at 1.0kHz, EG = 0V, IDCMET = 23mA. The frequency
response is computed using the following equation:
F4-2 = 20 • log (VTR/ERX), vary frequency from 300Hz to
3.4kHz and compare to 1kHz reading.
VTR and ERX are defined in Figure 9.
18. Four-Wire to Four-Wire Frequency Response - The 4-wire
to 4-wire frequency response is measured with respect to ERX
= 0dBm at 1.0kHz, EG = 0V, IDCMET = 23mA. The frequency
response is computed using the following equation:
F4-4 = 20 • log (VTX/ERX), vary frequency from 300Hz to
3.4kHz and compare to 1kHz reading.
VTX and ERX are defined in Figure 9.
19. Two-Wire to Four-Wire Insertion Loss - The 2-wire to 4-wire
insertion loss is measured with respect to EG = 0dBm at 1.0kHz
input signal, ERX = 0, IDCMET = 23mA and is computed using
the following equation:
L2-4 = 20 • log (VTX/VTR)
where: VTX, VTR, and EG are defined in Figure 9. (Note: The
fuse resistors, RF, impact the insertion loss. The specified
insertion loss is for RF = 0).
20. Four-Wire to Two-Wire Insertion Loss - The 4-wire to 2-wire
insertion loss is measured based upon ERX = 0dBm, 1.0kHz
input signal, EG = 0, IDCMET = 23mA and is computed using
the following equation:
L4-2 = 20 • log (VTR/ERX)
where: VTR and ERX are defined in Figure 9.
21. Two-Wire to Four-Wire Gain Tracking - The 2-wire to 4-wire
gain tracking is referenced to measurements taken for EG =
-10dBm, 1.0kHz signal, ERX = 0, IDCMET = 23mA and is com-
puted using the following equation.
G2-4 = 20 • log (VTX/VTR) vary amplitude -40dBm to +3dBm, or
-55dBm to -40dBm and compare to -10dBm reading.
VTX and VTR are defined in Figure 9.
22. Four-Wire to Two-Wire Gain Tracking - The 4-wire to 2-wire
gain tracking is referenced to measurements taken for ERX =
-10dBm, 1.0kHz signal, EG = 0, IDCMET = 23mA and is com-
puted using the following equation:
G4-2 = 20 • log (VTR/ERX) vary amplitude -40dBm to +3dBm, or
-55dBm to -40dBm and compare to -10dBm reading.
VTR and ERX are defined in Figure 9. The level is specified at
the 4-wire receive port and referenced to a 600Ω impedance
level.
23. Two-Wire Idle Channel Noise - The 2-wire idle channel noise
at VTR is specified with the 2-wire port terminated in 600Ω (RL)
and with the 4-wire receive port grounded (Reference Figure
10).
24. Four-Wire Idle Channel Noise - The 4-wire idle channel noise
at VTX is specified with the 2-wire port terminated in 600Ω (RL).
The noise specification is with respect to a 600Ω impedance
level at VTX. The 4-wire receive port is grounded (Reference
Figure 10).
25. Harmonic Distortion (2-Wire to 4-Wire) - The harmonic dis-
tortion is measured with the following conditions. EG = 0dBm at
1kHz, IDCMET = 23mA. Measurement taken at VTX. (Reference
Figure 7).
26. Harmonic Distortion (4-Wire to 2-Wire) - The harmonic dis-
tortion is measured with the following conditions. ERX = 0dBm0.
Vary frequency between 300Hz and 3.4kHz, IDCMET = 23mA.
Measurement taken at VTR. (Reference Figure 9).
27. Constant Loop Current - The constant loop current is calcu-
lated using the following equation:
IL = 2500 / (RDC1 + RDC2)
28. Standby State Loop Current - The standby state loop current
is calculated using the following equation:
16