English
Language : 

HC5526_03 Datasheet, PDF (14/20 Pages) Intersil Corporation – ITU CO/PABX SLIC with Low Power Standby
HC5526
process of ring trip is initiated when the logic input pins are in the
following states: E0 = 0, E1 = 1/0, C1 = 1 and C2 = 0. This logic
condition connects the ring trip comparator to the DET output,
and causes the Ringrly pin to energize the ring relay. The ring
relay connects the tip and ring of the phone to the external
circuitry in Figure 19. When the phone is on-hook the DT pin is
+-
TIP
R1
RING
CASE 1
IMETALLIC
←
CASE 2
CASE 3
ILONGITUDINAL
←
ILONGITUDINAL
→
R2
-
+
HC5526
more positive than the DR pin and the DET output is high. For
off-hook conditions DR is more positive than DT and DET goes
low. When DET goes low, indicating that the phone has gone
off-hook, the SLIC is commanded by the logic inputs to go into
the active state. In the active state, tip and ring are once again
connected to the phone and normal operation ensues.
gm1(IMETALLIC)
CURRENT
LOOP
COMPARATOR
gm1
gm2(ITIP - IRING)
gm2
IGK
RH
+-
GROUND
KEY
D2
D1
I1
COMPARATOR
RD
RH
IRD RD
CD
+-
-
VREF
1.25V
VEE
-5V
DIGITAL MULTIPLEXER
DET
FIGURE 18. LOOP CURRENT AND GROUND KEY DETECTORS
Figure 19 illustrates battery backed unbalanced ring injected
ringing. For tip injected ringing just reverse the leads to the
phone. The ringing source could also be balanced.
NOTE: The DET output will toggle at 20Hz because the DT input is
not completely filtered by CRT. Software can examine the duty cycle
and determine if the DET pin is low for more that half the time, if so
the off-hook condition is indicated.
RRT
R3CRT
R4
TIP ERG
R1 DT
-
+
DR
R2
RING TRIP
COMPARATOR
DET
RING
RING
RELAY
VBAT
RINGRLY
HC5526
FIGURE 19. RING TRIP CIRCUIT FOR BATTERY BACKED RINGING
Longitudinal Impedance
The feedback loop described in Figure 20(A, B) realizes the
desired longitudinal impedances from tip to ground and from
ring to ground. Nominal longitudinal impedance is resistive
and in the order of 22Ω.
In the presence of longitudinal currents this circuit attenuates
the voltages that would otherwise appear at the tip and ring
terminals, to levels well within the common mode range of
the SLIC. In fact, longitudinal currents may exceed the
programmed DC loop current without disturbing the SLIC’s
VF transmission capabilities.
The function of this circuit is to maintain the tip and ring
voltages symmetrically around VBAT/2, in the presence of
longitudinal currents. The differential transconductance
amplifiers GT and GR accomplish this by sourcing or sinking
the required current to maintain VC at VBAT/2.
When a longitudinal current is injected onto the tip and ring
inputs, the voltage at VC moves from it’s equilibrium value
VBAT/2. When VC changes by the amount ∆VC, this change
appears between the input terminals of the differential
transconductance amplifiers GT and GR. The output of GT
and GR are the differential currents ∆I1 and ∆I2, which in
turn feed the differential inputs of current sources IT and IR
respectively. IT and IR have current gains of 250 single
ended and 500 differentially, thus leading to a change in IT
and IR that is equal to 500(∆I) and 500(∆I2).
The circuit shown in Figure 20(B) illustrates the tip side of
the longitudinal network. The advantages of a differential
input current source are: improved noise since the noise due
to current source 2IO is now correlated, power savings due
to differential current gain and minimized offset error at the
Operational Amplifier inputs via the two 5kΩ resistors.
Digital Logic Inputs
Table 1 is the logic truth table for the TTL compatible logic
input pins. The HC5526 has two enable inputs pins (E0, E1)
and two control inputs pins (C1, C2).
14