English
Language : 

ISL6566 Datasheet, PDF (11/28 Pages) Intersil Corporation – Three-Phase Buck PWM Controller with Integrated MOSFET Drivers for VRM9, VRM10, and AMD Hammer Applications
ISL6566
IL
PWM
SWITCHING PERIOD
ISEN
SAMPLING PERIOD
OLD SAMPLE
CURRENT
NEW SAMPLE
CURRENT
TIME
FIGURE 4. SAMPLE AND HOLD TIMING
The ISL6566 supports MOSFET rDS(ON) current sensing to
sample each channel’s current for channel-current balance.
The internal circuitry, shown in Figure 5 represents channel
n of an N-channel converter. This circuitry is repeated for
each channel in the converter, but may not be active
depending on the status of the PVCC3 and PVCC2 pins, as
described in the PWM Operation section.
In
ISEN
=
IL
-r--D-----S----(---O-----N-----)
RISEN
VIN
CHANNEL N
UPPER MOSFET
SAMPLE
&
HOLD
-
+
IL
ISEN(n)
RISEN
-
IL rDS(ON)
+
CHANNEL N
LOWER MOSFET
ISL6565A INTERNAL CIRCUIT EXTERNAL CIRCUIT
FIGURE 5. ISL6566 INTERNAL AND EXTERNAL CURRENT-
SENSING CIRCUITRY FOR CURRENT BALANCE
The ISL6566 senses the channel load current by sampling
the voltage across the lower MOSFET rDS(ON), as shown in
Figure 5. A ground-referenced operational amplifier, internal
to the ISL6566, is connected to the PHASE node through a
resistor, RISEN. The voltage across RISEN is equivalent to
the voltage drop across the rDS(ON) of the lower MOSFET
while it is conducting. The resulting current into the ISEN pin
is proportional to the channel current, IL. The ISEN current is
sampled and held as described in the Current Sampling
section. From Figure 5, the following equation for In is
derived where IL is the channel current.
In
=
IL
r---D----S----(--O----N-----)
RISEN
(EQ. 3)
Output Voltage Setting
The ISL6566 uses a digital to analog converter (DAC) to
generate a reference voltage based on the logic signals at the
VID pins. The DAC decodes the 5 or 6-bit logic signals into
one of the discrete voltages shown in Tables 2, 3, and 4.
Each VID pin is pulled up to an internal 1.2V voltage by a
weak current source (40µA current), which decreases to 0 as
the voltage at the VID pin varies from 0 to the internal 1.2V
pull-up voltage. External pull-up resistors or active-high
output stages can augment the pull-up current sources, up to
a voltage of 5V.
.The ISL6566 accommodates three different DAC ranges:
Intel VRM9.0, AMD Hammer, or Intel VRM10.0. The state of
the VRM10 and VID12.5 pins decide which DAC version is
active. Refer to Table 1 for a description of how to select the
desired DAC version.
TABLE 1. ISL6566 DAC SELECT TABLE
DAC VERSION
VRM10 PIN
VID12.5 PIN
VRM10.0
high
-
VRM9.0
low
high
AMD HAMMER
low
low
TABLE 2. AMD HAMMER VOLTAGE IDENTIFICATION CODES
VID4
VID3
VID2
VID1
VID0 VDAC
1
1
1
1
1
Off
1
1
1
1
0
0.800
1
1
1
0
1
0.825
1
1
1
0
0
0.850
1
1
0
1
1
0.875
1
1
0
1
0
0.900
1
1
0
0
1
0.925
1
1
0
0
0
0.950
1
0
1
1
1
0.975
1
0
1
1
0
1.000
1
0
1
0
1
1.025
1
0
1
0
0
1.050
1
0
0
1
1
1.075
1
0
0
1
0
1.100
1
0
0
0
1
1.125
1
0
0
0
0
1.150
0
1
1
1
1
1.175
0
1
1
1
0
1.200
0
1
1
0
1
1.225
0
1
1
0
0
1.250
0
1
0
1
1
1.275
0
1
0
1
0
1.300
11
FN9178.3
July 25, 2005