English
Language : 

ICL8001G Datasheet, PDF (8/16 Pages) Infineon Technologies AG – Single-Stage Flyback And PFC Controller For LED Lighting Applications
Single-Stage Flyback and PFC Controller
ICL8001G
Functional Description
The voltage vZC is also used for the output overvoltage
protection. Once the voltage at this pin is higher than
the threshold VZCOVP during off-time of the main switch,
the IC is latched off after a fixed blanking time.
To achieve the switch-on at voltage valley, the voltage
from the auxiliary winding is fed to a time delay network
(the RC network consists of Dzc, Rzc1, Rzc2 and Czc as
shown in typical application circuit) before it is applied
to the zero-crossing detector through the ZC pin. The
needed time delay to the main oscillation signal ∆t
should be approximately one fourth of the oscillation
period (by transformer primary inductor and drain-
source capacitor) minus the propagation delay from
thedetected zero-crossing to the switch-on of the main
switch tdelay, theoretically:
∆t
=
-T---o----s---c-
4
–
tde
l
ay
[2]
This time delay should be matched by adjusting the
time constant of the RC network which is calculated as:
τtd
=
Cz
c
⋅
-R-----z---c---1-----⋅---R----z---c---2--
Rzc1 + Rzc2
[3]
3.3.2
Ringing suppression time
After MOSFET is turned off, there will be some
oscillation on VDS, which will also appear on the voltage
on ZC pin. To avoid that the MOSFET is turned on
mistriggerred by such oscillations, a ringing
suppression timer is implemented. The timer is
dependent on the voltage vZC. When the voltage vZC is
lower than the threshold VZCRS, a longer preset time
applies, while a shorter time is set when the voltage vZC
is higher than the threshold.
3.3.2.1 Switch on determination
After the gate drive goes to low, it can not be changed
to high during ring suppression time.
After ring suppression time, the gate drive can be
turned on when the zero crossing is detected.
However, it is also possible that the oscillation between
primary inductor and drain-source capacitor damps
very fast and IC can not detect a zero crossing. In this
case, a maximum off time is implemented. After gate
drive has been remained off for the period of TOffMax, the
gate drive will be turned on again regardless. This
function can effectively prevent the switching
frequency from going lower than 20kHz, otherwise
which will cause audible noise, during start up.
3.3.3
Switch Off Determination
In the converter system, the primary current is sensed
by an external shunt resistor, which is connected
between low-side terminal of the main power switch
and the common ground. The sensed voltage across
the shunt resistor vCS is applied to an internal current
measurement unit, and its output voltage V1 is
compared with the voltage at pin VR. Once the voltage
V1 exceeds the voltage VVR, the output flip-flop is reset.
As a result, the main power switch is switched off. The
relationship between the V1 and the vCS is described
by:
V1 = 3,3 ⋅ VCS + 0,7
[4]
To avoid mistriggering caused by the voltage spike
across the shunt resistor at the turn on of the main
power switch, a leading edge blanking time, tLEB, is
applied to the output of the comparator. In other words,
once the gate drive is turned on, the minimum on time
of the gate drive is the leading edge blanking time.
In addition, there is a maximum on time, tOnMax,
limitation implemented in the IC. Once the gate drive
has been in high state longer than the maximum on
time, it will be turned off to prevent the switching
frequency from going too low because of long on time.
3.4
Current Limitation
There is a cycle by cycle current limitation realized by
the current limit comparator to provide an overcurrent
detection. The source current of the MOSFET is
sensed via a sense resistor RCS. By means of RCS the
source current is transformed to a sense voltage VCS
which is fed into the pin CS. If the voltage VCS exceeds
an internal voltage limit, adjusted according to the
Mains voltage, the comparator immediately turns off
the gate drive.
To prevent the Current Limitation process from
distortions caused by leading edge spikes, a Leading
Edge Blanking time (tLEB) is integrated in the current
sensing path.
A further comparator is implemented to detect
dangerous current levels (VCSSW) which could occur if
one or more transformer windings are shorted or if the
secondary diode is shorted. To avoid an accidental
latch off, a spike blanking time of tCSSW is integrated in
the output path of the comparator.
3.4.1
Foldback Point Correction
When the main bus voltage increases, the switch on
time becomes shorter and therefore the operating
frequency is also increased. As a result, for a constant
primary current limit, the maximum possible output
power is increased, which the converter may have not
been designed to support.
To avoid such a situation, the internal foldback point
correction circuit varies the VCS voltage limit according
to the bus voltage. This means the VCS will be
decreased when the bus voltage increases. To keep a
constant maximum input power of the converter, the
Version 1.0
8
May 6, 2010