English
Language : 

IDT72V2101 Datasheet, PDF (12/27 Pages) Integrated Device Technology – 3.3 VOLT HIGH DENSITY CMOS SUPERSYNC FIFO
IDT72V2101/72V2111 3.3V HIGH DENSITY CMOS
SUPERSYNC FIFOTM 262,144 x 9, 524,288 x 9
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
When EF goes HIGH, Retransmit setup is complete and read operations
may begin starting with the first location in memory. Since IDT Standard
mode is selected, every word read including the first word following
Retransmit setup requires a LOW on REN to enable the rising edge of RCLK.
See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing
diagram.
If FWFT mode is selected, the FIFO will mark the beginning of the
Retransmit setup by setting OR HIGH. During this period, the internal read
pointer is set to the first location of the RAM array.
When OR goes LOW, Retransmit setup is complete; at the same time,
the contents of the first location appear on the outputs. Since FWFT mode
is selected, the first word appears on the outputs, no LOW on REN is necessary.
Reading all subsequent words requires a LOW on REN to enable the rising edge
of RCLK. See Figure 12, Retransmit Timing (FWFT Mode), for the relevant
timing diagram.
For either IDT Standard mode or FWFT mode, updating of the PAE, HF
and PAF flags begin with the rising edge of RCLK that RT is setup. PAE is
synchronized to RCLK, thus on the second rising edge of RCLK after RT is
setup, the PAE flag will be updated. HF is asynchronous, thus the rising
edge of RCLK that RT is setup will update HF. PAF is synchronized to
WCLK, thus the second rising edge of WCLK that occurs tSKEW after the
rising edge of RCLK that RT is setup will update PAF. RT is synchronized
to RCLK.
12