English
Language : 

ICS343 Datasheet, PDF (3/7 Pages) Integrated Circuit Systems – Field Programmable Triple Output SS VersaClock Synthesizer
ICS343
Field Programmable Triple Output SS VersaClock
the decoupling capacitor and VDD pin. The PCB trace
to VDD pin should be kept as short as possible, as
should the PCB trace to the ground via. Distance of the
ferrite bead and bulk decoupling from the device is less
critical.
2) The external crystal should be mounted just next to
the device with short traces. The X1 and X2 traces
should not be routed next to each other with minimum
spaces, instead they should be separated and away
from other traces.
3) To minimize EMI, the 33Ω series termination resistor
(if needed) should be placed close to the clock output.
4) An optimum layout is one with all components on the
same side of the board, minimizing vias through other
signal layers. Other signal traces should be routed
away from the ICS343. This includes signal traces just
underneath the device, or on layers adjacent to the
ground plane layer used by the device.
ICS343 Configuration Capabilities
The architecture of the ICS343 allows the user to easily
configure the device to a wide range of output
frequencies, for a given input reference frequency.
The frequency multiplier PLL provides a high degree of
precision. The M/N values (the multiplier/divide values
available to generate the target VCO frequency) can be
set within the range of M = 1 to 2048 and N = 1 to 1024.
The ICS343 also provides separate output divide
values, from 2 through 20, to allow the two output clock
banks to support widely differing frequency values from
the same PLL.
Each output frequency can be represented as:
OutputFreq
=
-------R----E-----F----F----r--e----q--------
OutputDivide
⋅
M----
N
VersaClock software quickly evaluates accessible VCO
frequencies with available output divide values and
provides an easy to understand, bar code rating for the
target output frequencies. The user may evaluate
output accuracy, performance trade-off scenarios in
seconds.
Spread Spectrum Modulation
The ICS343 utilizes frequency modulation (FM) to
distribute energy over a range of frequencies. By
modulating the output clock frequencies, the device
effectively lowers energy across a broader range of
frequencies; thus, lowering a system’s
electro-magnetic interference (EMI). The modulation
rate is the time from transitioning from a minimum
frequency to a maximum frequency and then back to
the minimum.
Spread Spectrum Modulation can be applied as either
“center spread” or “down spread”. During center spread
modulation, the deviation from the target frequency is
equal in the positive and negative directions. The
effective average frequency is equal to the target
frequency. In applications where the clock is driving a
component with a maximum frequency rating, down
spread should be applied. In this case, the maximum
frequency, including modulation, is the target
frequency. The effective average frequency is less than
the target frequency.
The ICS343 operates in both center spread and down
spread modes. For center spread, the frequency can
be modulated between +/- 0.125% to +/-2.0%. For
down spread, the frequency can be modulated
between -0.25% to -4.0%.
Both output frequency banks will utilize identical spread
spectrum percentage deviations and modulation rates,
if a common VCO frequency can be identified.
ICS VersaClock Software
ICS applies years of PLL optimization experience into a
user-friendly software that accepts the user’s target
reference clock and output frequencies and generates
the lowest jitter, lowest power configuration, with only a
press of a button. The user does not need to have prior
PLL experience or determine the optimal VCO
frequency to support multiple output frequencies.
Spread Spectrum Modulation Rate
The spread spectrum modulation frequency applied to
the output clock frequency may occur at a variety of
rates. For applications requiring the driving of
“down-circuit” PLLs, Zero Delay Buffers, or those
adhering to PCI standards, the spread spectrum
modulation rate should be set to 30-33 kHz. For other
applications, a 120 kHz modulation option is available.
MDS 343 F
3
Revision 090704
Integrated Circuit Systems, Inc. ● 525 Race Street, San Jose, CA 95126 ● tel (408) 297-1201 ● www.icst.com