English
Language : 

ICS290 Datasheet, PDF (3/8 Pages) Integrated Circuit Systems – Triple PLL Field Prog. Spread Spectrum Clock Synthesizer
PRELIMINARY INFORMATION
ICS290
Triple PLL Field Prog. Spread Spectrum Clock Synthesizer
External Components
The ICS290 requires a minimum number of external
components for proper operation.
Series Termination Resistor
Clock output traces over one inch should use series
termination. To series terminate a 50Ω trace (a
commonly used trace impedance), place a 33Ω resistor
in series with the clock line, as close to the clock output
pin as possible. The nominal impedance of the clock
output is 20Ω.
Decoupling Capacitors
As with any high-performance mixed-signal IC, the
ICS290 must be isolated from system power supply
noise to perform optimally.
Decoupling capacitors of 0.01µF must be connected
between each VDD and the PCB ground plane. For
optimum device performance, the decoupling capacitor
should be mounted on the component side of the PCB.
Avoid the use of vias on the decoupling circuit.
Crystal Load Capacitors
The device crystal connections should include pads for
small capacitors from X1 to ground and from X2 to
ground. These capacitors are used to adjust the stray
capacitance of the board to match the nominally
required crystal load capacitance. Because load
capacitance can only be increased in this trimming
process, it is important to keep stray capacitance to a
minimum by using very short PCB traces (and no vias)
been the crystal and device. Crystal capacitors must be
connected from each of the pins X1 and X2 to ground.
The value (in pF) of these crystal caps should equal
(CL -6 pF)*2. In this equation, CL= crystal load
capacitance in pF. Example: For a crystal with a 16 pF
load capacitance, each crystal capacitor would be 20
pF [(16-6) x 2] = 20.
ICS290 Configuration Capabilities
The architecture of the ICS290 allows the user to easily
configure the device to a wide range of output
frequencies, for a given input reference frequency.
The frequency multiplier PLL provides a high degree of
precision. The M/N values (the multiplier/divide values
available to generate the target VCO frequency) can be
set within the range of M = 1 to 1024 and N = 1 to
32,895.
The ICS290 also provides separate output divide
values, from 2 through 63, to allow the two output clock
banks to support widely differing frequency values from
the same PLL.
Each output frequency can be represented as:
OutputFreq
=
REFFreq
⋅
M----
N
Output Drive Control
The ICS290 has two output drive settings. Low drive
should be selected when outputs are less than 100
MHz. High drive should be selected when outputs are
greater than 100 MHz. (Consult the AC Electrical
Characteristics for output rise and fall times for each
drive option.)
ICS VersaClock Software
ICS applies years of PLL optimization experience into a
user friendly software that accepts the user’s target
reference clock and output frequencies and generates
the lowest jitter, lowest power configuration, with only a
press of a button. The user does not need to have prior
PLL experience or determine the optimal VCO
frequency to support multiple output frequencies.
VersaClock software quickly evaluates accessible VCO
frequencies with available output divide values and
provides an easy to understand, bar code rating for the
target output frequencies. The user may evaluate
output accuracy, performance trade-off scenarios in
seconds.
Spread Spectrum Modulation
The ICS290 utilizes frequency modulation (FM) to
distribute energy over a range of frequencies. By
modulating the output clock frequencies, the device
effectively lowers energy across a broader range of
frequencies; thus, lowering a system’s electromagnetic
interference (EMI). The modulation rate is the time from
transitioning from a minimum frequency to a maximum
frequency and then back to the minimum.
Spread Spectrum Modulation can be applied as either
“center spread” or “down spread”. During center spread
modulation, the deviation from the target frequency is
equal in the positive and negative directions. The
MDS 290 C
3
Revision 062305
Integrated Circuit Systems, Inc. ● 525 Race Street, San Jose, CA 95126 ● tel (408) 297-1201 ● www.icst.com