English
Language : 

SP3220EUEY-L-TR Datasheet, PDF (11/20 Pages) Exar Corporation – 3.0V to +5.5V RS-232 Driver/Receiver Pair
Charge Pump
The charge pump is an Exar-patended
design (U.S. 5,306,954) and uses a unique
approach compared to older less-efficient
designs. The charge pump still requires four
external capacitors, but uses a four-phase
voltage shifting technique to attain sym-
metrical 5.5V power supplies. The internal
power supply consists of a regulated dual
charge pump that provides output voltages
of +/-5.5V regardless of the input voltage
(Vcc) over the +3.0V to +5.5V range.
In most circumstances, decoupling the
power supply can be achieved adequately
using a 0.1µF bypass capacitor at C5 (refer
to figures 6 and 7). In applications that are
sensitive to power-supply noise, decouple
Vcc to ground with a capacitor of the same
value as charge-pump capacitor C1. Physi-
cally connect bypass capacitor as close to
the IC as possible.
The charge pump operates in a discontinu-
ous mode using an internal oscillator. If the
output voltages are less than a magnitude
of 5.5V, the charge pump is enabled. If the
output voltages exceed a magnitude of 5.5V,
the charge pump is disabled. This oscillator
controls the four phases of the voltage shift-
ing. A description of each phase follows.
Phase 1
— VSS charge storage — During this phase
of the clock cycle, the positive side of capaci-
tors C1 and C2 are initially charged to VCC.
Cinl+Cis1–tihsetrnasnwsfietcrhreedd
to
to
GND and the charge
C2–. Since C2+ is con-
nected to VCC, the voltage potential across
capacitor C2 is now 2 times VCC.
Phase 2
— VSS transfer — Phase two of the clock
connects the negative terminal of C2 to the VSS
storage capacitor and the positive terminal of
C2 to GND. This transfers a negative gener-
ated voltage to C3. This generated voltage is
regulated to a minimum voltage of -5.5V.
DESCRIPTION
Simultaneous with the transfer of the volt-
age to C3, the positive side of capacitor C1
is switched to VCC and the negative side is
connected to GND.
Phase 3
— VDD charge storage — The third phase of
the clock is identical to the first phase — the
charge transferred in C1 produces –VCC in
the negative terminal of C1, which is applied
to the negative side of capacitor C2. Since
C2+ is at VCC, the voltage potential across C2
is 2 times VCC.
Phase 4
— VDD transfer — The fourth phase of
the clock connects the negative terminal
of C2 to GND, and transfers this positive
generated voltage across C2 to C4, the
VDD storage capacitor. This voltage is
regulated to +5.5V. At this voltage, the in-
ternal oscillator is disabled. Simultaneous
with the transfer of the voltage to C4, the
positive side of capacitor C1 is switched
to VCC and the negative side is con-
nected to GND, allowing the charge
pump cycle to begin again. The charge
pump cycle will continue as long as the
operational conditions for the internal
oscillator are present.
Since both V+ and V– are separately gener-
ated from VCC, in a no–load condition V+
and V– will be symmetrical. Older charge
pump approaches that generate V– from
V+ will show a decrease in the magnitude
of V– compared to V+ due to the inherent
inefficiencies in the design.
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510-668-7017 • www.exar.com
11
SP3220E_EB_EU_102_102016