English
Language : 

CY7C68053_09 Datasheet, PDF (2/40 Pages) Cypress Semiconductor – MoBL-USB FX2LP18 USB Microcontroller
CY7C68053
Cypress Semiconductor Corporation’s MoBL-USB™ FX2LP18
(CY7C68053) is a low voltage (1.8V) version of the EZ-USB®
FX2LP (CY7C68013A), which is a highly integrated, low power
USB 2.0 microcontroller. By integrating the USB 2.0 transceiver,
serial interface engine (SIE), enhanced 8051 microcontroller,
and a programmable peripheral interface in a single chip,
Cypress has created a very cost effective solution that provides
superior time-to-market advantages with low power to enable
bus powered applications.
The ingenious architecture of MoBL-USB FX2LP18 results in
data transfer rates of over 53 Mbytes per second, the maximum
allowable USB 2.0 bandwidth, while still using a low cost 8051
microcontroller in a package as small as a 56VFBGA (5 mm x
5 mm). Because it incorporates the USB 2.0 transceiver, the
MoBL-USB FX2LP18 is more economical, providing a smaller
footprint solution than USB 2.0 SIE or external transceiver
implementations. With MoBL-USB FX2LP18, the Cypress Smart
SIE handles most of the USB 1.1 and 2.0 protocol in hardware,
freeing the embedded microcontroller for application-specific
functions and decreasing development time to ensure USB
compatibility.
The General Programmable Interface (GPIF) and Master/Slave
Endpoint FIFO (8 or 16-bit data bus) provide an easy and
glueless interface to popular interfaces such as ATA, UTOPIA,
EPP, PCMCIA, and most DSP/processors.
The MoBL-USB FX2LP18 is also referred to as FX2LP18 in this
document.
2. Applications
There are a wide variety of applications for the MoBL-USB
FX2LP18. It is used in cell phones, smart phones, PDAs, and
MP3 players, to name a few.
The ‘Reference Designs’ section of the Cypress web site
provides additional tools for typical USB 2.0 applications. Each
reference design comes complete with firmware source and
object code, schematics, and documentation. For more
information, visit http://www.cypress.com.
3. Functional Overview
The functionality of this chip is described in the sections below.
3.1 USB Signaling Speed
FX2LP18 operates at two of the three rates defined in the USB
Specification Revision 2.0, dated April 27, 2000.
■ Full speed, with a signaling bit rate of 12 Mbps
■ High speed, with a signaling bit rate of 480 Mbps
FX2LP18 does not support the low speed signaling mode of
1.5 Mbps.
3.2 8051 Microprocessor
The 8051 microprocessor embedded in the FX2LP18 family has
256 bytes of register RAM, an expanded interrupt system, and
three timer/counters.
3.2.1 8051 Clock Frequency
FX2LP18 has an on-chip oscillator circuit that uses an external
24 MHz (±100-ppm) crystal with the following characteristics:
■ Parallel resonant
■ Fundamental mode
■ 500 µW drive level
■ 12 pF (5% tolerance) load capacitors
An on-chip PLL multiplies the 24 MHz oscillator up to 480 MHz,
as required by the transceiver/PHY; internal counters divide it
down for use as the 8051 clock. The default 8051 clock
frequency is 12 MHz. The clock frequency of the 8051 can be
changed by the 8051 through the CPUCS register, dynamically.
Figure 1. Crystal Configuration
C1 24 MHz C2
12 pF
12 pF
20 × PLL
12 pF capacitor values assumes a trace capacitance
of 3 pF per side on a four-layer FR4 PCA
The CLKOUT pin, which can be tristated and inverted using
internal control bits, outputs the 50% duty cycle 8051 clock, at
the selected 8051 clock frequency — 48, 24, or 12 MHz.
3.2.2 Special Function Registers
Certain 8051 Special Function Register (SFR) addresses are
populated to provide fast access to critical FX2LP18 functions.
These SFR additions are shown in Table 1 on page 3. Bold type
indicates non standard, enhanced 8051 registers. The two SFR
rows that end with ‘0’ and ‘8’ contain bit-addressable registers.
The four I/O ports A–D use the SFR addresses used in the
standard 8051 for ports 0–3, which are not implemented in
FX2LP18. Because of the faster and more efficient SFR
addressing, the FX2LP18 I/O ports are not addressable in
external RAM space (using the MOVX instruction).
Document # 001-06120 Rev *I
Page 2 of 40
[+] Feedback