English
Language : 

CY7C1460AV25_06 Datasheet, PDF (1/27 Pages) Cypress Semiconductor – 36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL™ Architecture
CY7C1460AV25
CY7C1462AV25
CY7C1464AV25
36-Mbit (1M x 36/2M x 18/512K x 72)
Pipelined SRAM with NoBL™ Architecture
Features
• Pin-compatible and functionally equivalent to ZBT™
• Supports 250-MHz bus operations with zero wait states
— Available speed grades are 250, 200 and 167 MHz
• Internally self-timed output buffer control to eliminate
the need to use asynchronous OE
• Fully registered (inputs and outputs) for pipelined
operation
• Byte Write capability
• 2.5V core power supply
• 2.5V/1.8V I/O power supply
• Fast clock-to-output times
— 2.6 ns (for 250-MHz device)
• Clock Enable (CEN) pin to suspend operation
• Synchronous self-timed writes
• CY7C1460AV25, CY7C1462AV25 available in
JEDEC-standard lead-free 100-pin TQFP package,
lead-free and non-lead-free 165-ball FBGA package.
CY7C1464AV25 available in lead-free and non-lead-free
209-ball FBGA package
• IEEE 1149.1 JTAG-Compatible Boundary Scan
• Burst capability—linear or interleaved burst order
• “ZZ” Sleep Mode option and Stop Clock option
Functional Description
The CY7C1460AV25/CY7C1462AV25/CY7C1464AV25 are
2.5V, 1M x 36/2M x 18/512 x 72 Synchronous pipelined burst
SRAMs with No Bus Latency™ (NoBL™) logic, respectively.
They are designed to support unlimited true back-to-back
Read/Write operations with no wait states. The
CY7C1460AV25/CY7C1462AV25/CY7C1464AV25
are
equipped with the advanced (NoBL) logic required to enable
consecutive Read/Write operations with data being trans-
ferred on every clock cycle. This feature dramatically improves
the throughput of data in systems that require frequent
Write/Read
transitions.
The
CY7C1460AV25/CY7C1462AV25/CY7C1464AV25
are
pin-compatible and functionally equivalent to ZBT devices.
All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock. The
clock input is qualified by the Clock Enable (CEN) signal,
which when deasserted suspends operation and extends the
previous clock cycle. Write operations are controlled by the
Byte Write Selects (BWa–BWh for CY7C1464AV25,
BWa–BWd for CY7C1460AV25 and BWa–BWb for
CY7C1462AV25) and a Write Enable (WE) input. All writes are
conducted with on-chip synchronous self-timed write circuitry.
Three synchronous Chip Enables (CE1, CE2, CE3) and an
asynchronous Output Enable (OE) provide for easy bank
selection and output three-state control. In order to avoid bus
contention, the output drivers are synchronously three-stated
during the data portion of a write sequence.
Logic Block Diagram–CY7C1460AV25 (1M x 36)
A0, A1, A
MODE
CLK
C
CEN
ADDRESS
REGISTER 0
WRITE ADDRESS
REGISTER 1
A1 D1
Q1 A1'
A0 D0 BURST Q0 A0'
LOGIC
ADV/LD
C
WRITE ADDRESS
REGISTER 2
ADV/LD
BWa
BWb
BWc
BWd
WE
WRITE REGISTRY
AND DATA COHERENCY
CONTROL LOGIC
WRITE
DRIVERS
S
E
N
S
E
MEMORY
ARRAY
A
M
P
S
O
U
T
P
U
T
R
E
G
I
S
T
E
R
S
E
D
A
T
A
S
T
E
E
R
I
N
O
U
T
P
U
T
B
U
F
F
E
R
S
E
G
DQs
DQPa
DQPb
DQPc
DQPd
INPUT
REGISTER 1 E
INPUT
REGISTER 0 E
OE
CE1
READ LOGIC
CE2
CE3
ZZ
SLEEP
CONTROL
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document #: 38-05354 Rev. *D
Revised June 22, 2006
[+] Feedback