English
Language : 

AT45D081 Datasheet, PDF (4/16 Pages) ATMEL Corporation – 8-Megabit 5-volt Only Serial DataFlash
Buffer to Main Memory Page Program with Built-In Erase.
A page of data is first transferred from the main memory to
buffer 1 or buffer 2, and then the same data (from buffer 1
or buffer 2) is programmed back into its original page of
main memory. An 8-bit opcode, 58H for buffer 1 or 59H for
buffer 2, is followed by the three reserved bits, 12 address
bits (PA11-PA0) that specify the page in main memory to
be rewritten, and nine additional don't care bits. When a
low to high transition occurs on the CS pin, the part will first
transfer data from the page in main memory to a buffer and
then program the data from the buffer back into same page
of main memory. The operation is internally self-timed and
should take place in a maximum time of tEP. During this
time, the status register will indicate that the part is busy.
If the main memory is programmed or reprogrammed
sequentially page by page, then the programming algo-
rithm shown in Figure 1 is recommended. Otherwise, if
multiple bytes in a page or several pages are programmed
randomly in the main memory, then the programming algo-
rithm shown in Figure 2 is recommended.
STATUS REGISTER: The status register can be used to
determine the device’s ready/busy status, the result of a
Main Memory Page to Buffer Compare operation, or the
device density. To read the status register, an opcode of
57H must be loaded into the device. After the last bit of the
opcode is shifted in, the eight bits of the status register,
starting with the MSB (bit 7), will be shifted out on the SO
pin during the next eight clock cycles. The five most-signifi-
cant bits of the status register will contain device informa-
tion, while the remaining three least-significant bits are
reserved for future use and will have undefined values.
After bit 0 of the status register has been shifted out, the
sequence will repeat itself (as long as CS remains low and
SCK is being toggled) starting again with bit 7. The data in
the status register is constantly updated, so each repeating
sequence will output new data.
Ready/busy status is indicated using bit 7 of the status reg-
ister. If bit 7 is a 1, then the device is not busy and is ready
to accept the next command. If bit 7 is a 0, then the device
is in a busy state. The user can continuously poll bit 7 of the
status register by stopping SCK once bit 7 has been output.
The status of bit 7 will continue to be output on the SO pin,
and once the device is no longer busy, the state of SO will
change from 0 to 1. There are six operations which can
cause the device to be in a busy state: Main Memory Page
to Buffer Transfer, Main Memory Page to Buffer Compare,
Buffer to Main Memory Page Program with Built-In Erase,
Buffer to Main Memory Page Program without Built-In
Erase, Main Memory Page Program, and Auto Page
Rewrite.
The result of the most recent Main Memory Page to Buffer
Compare operation is indicated using bit 6 of the status
register. If bit 6 is a 0, then the data in the main memory
page matches the data in the buffer. If bit 6 is a 1, then at
least one bit of the data in the main memory page does not
match the data in the buffer.
The device density is indicated using bits 5, 4, and 3 of the
status register. For the AT45D081, the three bits are 1, 0,
and 0. The decimal value of these three binary bits does
not equate to the device density; the three bits represent a
combinational code relating to differing densities of Serial
DataFlash devices, allowing a total of eight different density
configurations.
Read/Program Mode Summary
The modes listed above can be separated into two groups
— modes which make use of the flash memory array
(Group A) and modes which do not make use of the flash
memory array (Group B).
Group A modes consist of:
1. Main memory page read
2. Main memory page to buffer 1 (or 2) transfer
3. Main memory page to buffer 1 (or 2) compare
4. Buffer 1 (or 2) to main memory page program with
built-in erase
5. Buffer 1 (or 2) to main memory page program with-
out built-in erase
6. Main memory page program
7. Auto page rewrite
Group B modes consist of:
1. Buffer 1 (or 2) read
2. Buffer 1 (or 2) write
3. Status read
If a Group A mode is in progress (not fully completed) then
another mode in Group A should not be started. However,
during this time in which a Group A mode is in progress,
modes in Group B can be started.
This gives the Serial DataFlash the ability to virtually
accommodate a continuous data stream. While data is
being programmed into main memory from buffer 1, data
can be loaded into buffer 2 (or vice versa). See application
note AN-4 (“Using Atmel’s Serial DataFlash”) for more
details.
Status Register Format
Bit 7
RDY/BUSY
Bit 6
COMP
Bit 5
1
Bit 4
0
Bit 3
0
Bit 2
X
Bit 1
X
Bit 0
X
4
AT45D081