English
Language : 

AT26F004_14 Datasheet, PDF (12/38 Pages) ATMEL Corporation – Serial Peripheral Interface (SPI) Compatible
8.4 Chip Erase
The entire memory array can be erased in a single operation by using the Chip Erase command.
Before a Chip Erase command can be started, the Write Enable command must have been pre-
viously issued to the device to set the WEL bit of the Status Register to a logical “1” state.
Two opcodes, 60h and C7h, can be used for the Chip Erase command. There is no difference in
device functionality when utilizing the two opcodes, so they can be used interchangeably. To
perform a Chip Erase, one of the two opcodes (60h or C7h) must be clocked into the device.
Since the entire memory array is to be erased, no address bytes need to be clocked into the
device, and any data clocked in after the opcode will be ignored. When the CS pin is deasserted,
the device will erase the entire memory array. The erasing of the device is internally self-timed
and should take place in a time of tCHPE.
The complete opcode must be clocked into the device before the CS pin is deasserted; other-
wise, no erase will be performed. In addition, if any sector of the memory array is in the
protected state, then the Chip Erase command will not be executed, and the device will return to
the idle state once the CS pin has been deasserted. The WEL bit in the Status Register will be
reset back to the logical “0” state if a sector is in the protected state.
While the device is executing a successful erase cycle, the Status Register can be read and will
indicate that the device is busy. For faster throughput, it is recommended that the Status Regis-
ter be polled rather than waiting the tCHPE time to determine if the device has finished erasing. At
some point before the erase cycle completes, the WEL bit in the Status Register will be reset
back to the logical “0” state.
Figure 8-5. Chip Erase
CS
SCK
SI
SO
01234567
OPCODE
CCCCCCCC
MSB
HIGH-IMPEDANCE
12 AT26F004
3588D–DFLASH–10/08