English
Language : 

AAT3167_07 Datasheet, PDF (12/14 Pages) Advanced Analogic Technologies – High Efficiency 1X/1.5X/2X Charge Pump for White LED Applications
AAT3167
High Efficiency 1X/1.5X/2X Charge
Pump for White LED Applications
Capacitor Characteristics
Ceramic composition capacitors are highly recom-
mended over all other types of capacitors for use
with the AAT3167. Ceramic capacitors offer many
advantages over their tantalum and aluminum elec-
trolytic counterparts. A ceramic capacitor typically
has very low ESR, is lowest cost, has a smaller
PCB footprint, and is non-polarized. Low-ESR
ceramic capacitors help maximize charge pump
transient response. Since ceramic capacitors are
non-polarized, they are not prone to incorrect con-
nection damage.
Equivalent Series Resistance
ESR is an important characteristic to consider when
selecting a capacitor. ESR is a resistance internal to
a capacitor that is caused by the leads, internal con-
nections, size or area, material composition, and
ambient temperature. Capacitor ESR is typically
measured in milliohms for ceramic capacitors and
can range to more than several ohms for tantalum
or aluminum electrolytic capacitors.
Ceramic Capacitor Materials
Ceramic capacitors less than 0.1µF are typically
made from NPO or C0G materials. NPO and C0G
materials generally have tight tolerance and are
very stable over temperature. Larger capacitor val-
ues are usually composed of X7R, X5R, Z5U, or
Y5V dielectric materials. Large ceramic capacitors
(i.e., greater than 2.2µF) are often available in low-
cost Y5V and Z5U dielectrics, but capacitors
greater than 1µF are not typically required for
AAT3167 applications.
Capacitor area is another contributor to ESR.
Capacitors that are physically large will have a lower
ESR when compared to an equivalent material
smaller capacitor. These larger devices can improve
circuit transient response when compared to an
equal value capacitor in a smaller package size.
12
3167.2007.03.1.4