English
Language : 

AM29LV652D Datasheet, PDF (35/54 Pages) SPANSION – 128 Megabit (16 M x 8-Bit) CMOS 3.0 Volt-only Uniform Sector Flash Memory with VersatileIO Control
DATA SHEET
DQ2: Toggle Bit II
The “Toggle Bit II” on DQ2, when used with DQ6, indi-
cates whether a particular sector is actively erasing
(that is, the Embedded Erase algorithm is in progress),
or whether that sector is erase-suspended. Toggle Bit
II is valid after the rising edge of the final WE# pulse in
the command sequence.
DQ2 toggles when the system reads at addresses
within those sectors that have been selected for era-
sure. (The system may use either OE# or CE# or
CE2# to control the read cycles.) But DQ2 cannot dis-
tinguish whether the sector is actively erasing or is
erase-suspended. DQ6, by comparison, indicates
whether the device is actively erasing, or is in Erase
Suspend, but cannot distinguish which sectors are se-
lected for erasure. Thus, both status bits are required
for sector and mode information. Refer to Table 11, on
page 34 to compare outputs for DQ2 and DQ6.
Figure 6, on page 32 shows the toggle bit algorithm in
flowchart form, and the section “DQ2: Toggle Bit II” ex-
plains the algorithm. See also the DQ6: Toggle Bit I
subsection. Figure 19, on page 45 shows the toggle bit
timing diagram. Figure 20, on page 45 shows the dif-
ferences between DQ2 and DQ6 in graphical form.
Reading Toggle Bits DQ6/DQ2
Refer to Figure 6, on page 32 for the following discus-
sion. Whenever the system initially begins reading tog-
gle bit status, it must read DQ7–DQ0 at least twice in a
row to determine whether a toggle bit is toggling. Typi-
cally, the system would note and store the value of the
toggle bit after the first read. After the second read, the
system would compare the new value of the toggle bit
with the first. If the toggle bit is not toggling, the device
has completed the program or erase operation. The
system can read array data on DQ7–DQ0 on the fol-
lowing read cycle.
However, if after the initial two read cycles, the system
determines that the toggle bit is still toggling, the sys-
tem also should note whether the value of DQ5 is high
(see the section on DQ5). If it is, the system should
then determine again whether the toggle bit is tog-
gling, since the toggle bit may have stopped toggling
just as DQ5 went high. If the toggle bit is no longer
toggling, the device has successfully completed the
program or erase operation. If it is still toggling, the de-
vice did not completed the operation successfully, and
the system must write the reset command to return to
reading array data.
The remaining scenario is that the system initially de-
termines that the toggle bit is toggling and DQ5 has
not gone high. The system may continue to monitor
the toggle bit and DQ5 through successive read cy-
cles, determining the status as described in the previ-
ous paragraph. Alternatively, it may choose to perform
other system tasks. In this case, the system must start
at the beginning of the algorithm when it returns to de-
termine the status of the operation (top of Figure 6, on
page 32).
DQ5: Exceeded Timing Limits
DQ5 indicates whether the program or erase time ex-
ceeded a specified internal pulse count limit. Under these
conditions DQ5 produces a “1,” indicating that the program
or erase cycle was not successfully completed.
The device may output a “1” on DQ5 if the system tries
to program a “1” to a location that was previously pro-
grammed to “0.” Only an erase operation can
change a “0” back to a “1.” Under this condition, the
device halts the operation, and when the timing limit is
exceeded, DQ5 produces a “1.”
Under both these conditions, the system must write
the reset command to return to the read mode (or to
the erase-suspend-read mode if the device was previ-
ously in the erase-suspend-program mode).
DQ3: Sector Erase Timer
After writing a sector erase command sequence, the
system may read DQ3 to determine whether or not
erasure began. (The sector erase timer does not apply
to the chip erase command.) If additional sectors are
selected for erasure, the entire time-out also applies
after each additional sector erase command. When
the time-out period is complete, DQ3 switches from a
“0” to a “1.” If the time between additional sector erase
commands from the system can be assumed to be
less than 50 µs, the system need not monitor DQ3.
See also “Sector Erase Command Sequence” on
page 28
After the sector erase command is written, the system
should read the status of DQ7 (Data# Polling) or DQ6
(Toggle Bit I) to ensure that the device accepted the
command sequence, and then read DQ3. If DQ3 is “1,”
the Embedded Erase algorithm has begun; all further
commands (except Erase Suspend) are ignored until
the erase operation is complete. If DQ3 is “0,” the de-
vice accepts additional sector erase commands. To
ensure the command is accepted, the system software
should check the status of DQ3 prior to and following
each subsequent sector erase command. If DQ3 is
high on the second status check, the last command
might not have been accepted.
Table 11, on page 34 shows the status of DQ3 relative
to the other status bits.
May 5, 2006 24961A5
Am29LV652D
33