English
Language : 

DS99144 Datasheet, PDF (3/16 Pages) Agere Systems – QUAD DIFFERENTIAL DRIVERS
Data Sheet
January 1999
Quad Differential Drivers
BDG1A, BDP1A, BDGLA, BPNGA, BPNPA, and BPPGA
Electrical Characteristics
For electrical characteristics over the entire temperature range, see Figures 7 through 9.
Table 2. Power Supply Current Characteristics
TA = –40 °C to +125 °C, VCC = 5 V ± 0.5 V.
Parameter
Power Supply Current (VCC = 5.5 V):
All Outputs Disabled:
BDG1A*, BPNGA*
BDP1A†, BPNPA†
BDGLA*
BPPGA*†
All Outputs Enabled:
BDG1A*, BPNGA*
BDP1A†, BPNPA†
BDGLA*
BPPGA*†
Symbol
Min
Typ
Max
Unit
ICC

45
65
mA
ICC

120
160
mA
ICC

35
55
mA
ICC

85
115
mA
ICC

25
40
mA
ICC

150
200
mA
ICC

14
20
mA
ICC

90
115
mA
* Measured with no load (BPPGA has no load on drivers C and D).
† The additional power dissipation is the result of integrating the termination resistors into the device. ICC is measured with a 100 Ω resistor
across the driver outputs (BPPGA has terminating resistors on drivers A and B).
Third State
These drivers produce pseudo-ECL levels, and the third-state mode is different than the conventional TTL devices.
When a driver is placed in the third state, the bases of the output transistors are pulled low, bringing the outputs
below the active-low levels. This voltage is typically 2 V for most drivers. In the bidirectional bus application, the
driver of one device, which is in its third state, may be back driven by another driver on the bus whose voltage in
the low state is lower than the third-stated device. This could come about due to differences in the drivers’ indepen-
dent power supplies. In this case, the device in the third state will control the line, thus clamping the line and reduc-
ing the signal swing. If the difference voltage between the independent power supplies and the drivers is small,
then this consideration can be ignored. In the typical case, the difference voltage can be as much as 1 V without
significantly affecting the amplitude of the driving signal.
Agere Systems Inc.
3