English
Language : 

ADE7752 Datasheet, PDF (4/10 Pages) Analog Devices – Three Phase Energy Metering IC with Pulse Output
ADE7752
PRELIMINARY TECHNICAL DATA
ABSOLUTE MAXIMUM RATINGS*
(TA = +25°C unless otherwise noted)
VDD to AGND . . . . . . . . . . . . . . . . . . . . . .
VDD to DGND . . . . . . . . . . . . . . . . . . . . . .
Analog Input Voltage to AGND
–0.3 V to +7 V
–0.3 V to +7 V
VAP, VBP, VCP, VN, IAP, IAN, . . . . . . . . . . . . . . . . . .
IBP, IBN, ICP and ICN . . . . . . . . . . . . . –6 V to +6 V
Reference Input Voltage to AGND –0.3 V to VDD + 0.3 V
Digital Input Voltage to DGND . –0.3 V to VDD + 0.3 V
Digital Output Voltage to DGND –0.3 V to VDD + 0.3 V
Operating Temperature Range
Industrial . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
Storage Temperature Range . . . . . . . . –65°C to +150°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +150°C
24-Lead SOIC, Power Dissipation . . . . . . . . . TBD mW
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . 250 °C/W
Lead Temperature, Soldering
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . +215°C
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . +220°C
*Stresses above those listed under Absolute Maximum Ratings may cause permanent
damage to the device. This is a stress rating only; functional operation of the device
at these or any other conditions above those listed in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the ADE7752 features proprietary ESD protection circuitry, permanent damage may occur
on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
TERMINOLOGY
MEASUREMENT ERROR
The error associated with the energy measurement made by
the ADE7752 is defined by the following formula:
Percentage Error = Energy Registered by the ADE7752 – True Energy × 100%
True Energy
PHASE ERROR BETWEEN CHANNELS
The HPF (High Pass Filter) in the current channel has a
phase lead response. To offset this phase response and
equalize the phase response between channels a phase correc-
tion network is also placed in the current channel. The phase
correction network ensures a phase match between the
current channels and voltage channels to within ±0.1° over a
range of 45Hz to 65Hz and ±0.2° over a range 40Hz to 1kHz.
This phase mismatch between the voltage and the current
channels can be further reduced with the phase calibration
register in each phase.
See Figures 18 and 19.
POWER SUPPLY REJECTION
This quantifies the ADE7752 measurement error as a per-
centage of reading when the power supplies are varied.
For the ac PSR measurement a reading at nominal supplies
(5 V) is taken. A 200 mV rms/100 Hz signal is then
introduced onto the supplies and a second reading obtained
under the same input signal levels. Any error introduced is
expressed as a percentage of reading—see Measurement Error
definition.
For the dc PSR measurement a reading at nominal supplies
(5 V) is taken. The supply is then varied ±5% and a second
reading is obtained with the same input signal levels. Any
error introduced is again expressed as a percentage of
reading.
ADC OFFSET ERROR
This refers to the dc offset associated with the analog inputs
to the ADCs. It means that with the analog inputs connected
to AGND the ADCs still see an analog input signal of 1 mV
to 10 mV, depending on gain setting. However, as the HPF
is always present, the offset is removed from the current
channel and the power calculation is not affected by this
offset.
GAIN ERROR
The gain error of the ADE7752 is defined as the difference
between the measured output frequency (minus the offset) and
the ideal output frequency. The difference is expressed as a
percentage of the ideal frequency. The ideal frequency is
obtained from the ADE7752 transfer function—see Transfer
Function section.
–4–
REV. PrB 08/01