English
Language : 

ADUM3401ARWZ-RL Datasheet, PDF (20/24 Pages) Analog Devices – Quad-Channel, Digital Isolators, hanced System-Level ESD Reliability
ADuM3400/ADuM3401/ADuM3402
APPLICATION INFORMATION
PC BOARD LAYOUT
The ADuM340x digital isolator requires no external interface
circuitry for the logic interfaces. Power supply bypassing is
strongly recommended at the input and output supply pins (see
Figure 17). Bypass capacitors are most conveniently connected
between Pin 1 and Pin 2 for VDD1 and between Pin 15 and
Pin 16 for VDD2. The capacitor value should be between 0.01 μF
and 0.1 μF. The total lead length between both ends of the
capacitor and the input power supply pin should not exceed
20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9
and Pin 16 should also be considered unless the ground pair on
each package side is connected close to the package.
VDD1
GND1
VIA
VIB
VIC/OC
VID/OD
VE1
GND1
VDD2
GND2
VOA
VOB
VOC/IC
VOD/ID
VE2
GND2
Figure 17. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, care
should be taken to ensure that board coupling across the isolation
barrier is minimized. Furthermore, the board layout should be
designed such that any coupling that does occur equally affects
all pins on a given component side. Failure to ensure this could
cause voltage differentials between pins exceeding the Absolute
Maximum Ratings of the device, thereby leading to latch-up or
permanent damage.
See the AN-1109 Application Note for board layout guidelines.
SYSTEM-LEVEL ESD CONSIDERATIONS AND
ENHANCEMENTS
System-level ESD reliability (for example, per IEC 61000-4-x) is
highly dependent on system design, which varies widely by
application. The ADuM340x incorporate many enhancements
to make ESD reliability less dependent on system design. The
enhancements include:
 ESD protection cells added to all input/output interfaces.
 Key metal trace resistances reduced using wider geometry
and paralleling of lines with vias.
 The SCR effect inherent in CMOS devices minimized by
use of guarding and isolation technique between PMOS
and NMOS devices.
 Areas of high electric field concentration eliminated using
45° corners on metal traces.
 Supply pin overvoltage prevented with larger ESD clamps
between each supply pin and its respective ground.
Data Sheet
While the ADuM340x improve system-level ESD reliability,
they are no substitute for a robust system-level design. See the
AN-793 application note, ESD/Latch-Up Considerations with
iCoupler Isolation Products for detailed recommendations on
board layout and system-level design.
PROPAGATION DELAY-RELATED PARAMETERS
Propagation delay is a parameter that describes the time it takes
a logic signal to propagate through a component. The propagation
delay to a logic low output can differ from the propagation
delay to a logic high.
INPUT (VIx)
OUTPUT (VOx)
tPLH
tPHL
50%
50%
Figure 18. Propagation Delay Parameters
Pulse width distortion is the maximum difference between
these two propagation delay values and is an indication of how
accurately the input signal’s timing is preserved.
Channel-to-channel matching refers to the maximum amount
the propagation delay differs between channels within a single
ADuM340x component.
Propagation delay skew refers to the maximum amount the
propagation delay differs between multiple ADuM340x
components operating under the same conditions.
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY
Positive and negative logic transitions at the isolator input cause
narrow (~1 ns) pulses to be sent to the decoder via the transformer.
The decoder is bistable and is, therefore, either set or reset by
the pulses, indicating input logic transitions. In the absence of
logic transitions at the input for more than ~1 μs, a periodic set
of refresh pulses indicative of the correct input state are sent to
ensure dc correctness at the output. If the decoder receives no
internal pulses of more than about 5 μs, the input side is
assumed to be unpowered or nonfunctional, in which case the
isolator output is forced to a default state (see Table 11) by the
watchdog timer circuit.
The limitation on the magnetic field immunity of the ADuM340x
is set by the condition in which induced voltage in the receiving
coil of the transformer is sufficiently large to either falsely set or
reset the decoder. The following analysis defines the conditions
under which this can occur. The 3 V operating condition of the
ADuM340x is examined because it represents the most
susceptible mode of operation.
Rev. B | Page 20 of 24