English
Language : 

ADSP-BF531 Datasheet, PDF (15/56 Pages) Analog Devices – Blackfin Embedded Processor
• Set conditional breakpoints on registers, memory,
and stacks.
• Trace instruction execution.
• Perform linear or statistical profiling of program execution.
• Fill, dump, and graphically plot the contents of memory.
• Perform source level debugging.
• Create custom debugger windows.
The VisualDSP++ IDDE lets programmers define and manage
software development. Its dialog boxes and property pages let
programmers configure and manage all of the Blackfin develop-
ment tools, including the color syntax highlighting in the
VisualDSP++ editor. This capability permits programmers to:
• Control how the development tools process inputs and
generate outputs.
• Maintain a one-to-one correspondence with the tool’s
command line switches.
The VisualDSP++ Kernel (VDK) incorporates scheduling and
resource management tailored specifically to address the mem-
ory and timing constraints of DSP programming. These
capabilities enable engineers to develop code more effectively,
eliminating the need to start from the very beginning, when
developing new application code. The VDK features include
Threads, Critical and Unscheduled regions, Semaphores,
Events, and Device flags. The VDK also supports Priority-based,
Preemptive, Cooperative, and Time-Sliced scheduling
approaches. In addition, the VDK was designed to be scalable. If
the application does not use a specific feature, the support code
for that feature is excluded from the target system.
Because the VDK is a library, a developer can decide whether to
use it or not. The VDK is integrated into the VisualDSP++
development environment, but can also be used via standard
command line tools. When the VDK is used, the development
environment assists the developer with many error-prone tasks
and assists in managing system resources, automating the gen-
eration of various VDK based objects, and visualizing the
system state, when debugging an application that uses the VDK.
VCSE is Analog Devices technology for creating, using, and
reusing software components (independent modules of sub-
stantial functionality) to quickly and reliably assemble software
applications. Download components from the Web and drop
them into the application. Publish component archives from
within VisualDSP++. VCSE supports component implementa-
tion in C/C++ or assembly language.
Use the Expert Linker to visually manipulate the placement of
code and data on the embedded system. View memory utiliza-
tion in a color-coded graphical form, easily move code and data
to different areas of the processor or external memory with the
drag of the mouse, examine run time stack and heap usage. The
Expert Linker is fully compatible with existing Linker Definition
File (LDF), allowing the developer to move between the graphi-
cal and textual environments.
Analog Devices emulators use the IEEE 1149.1 JTAG Test
Access Port of the ADSP-BF531/2/3 processor to monitor and
control the target board processor during emulation. The emu-
ADSP-BF531/ADSP-BF532/ADSP-BF533
lator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Non-
intrusive in-circuit emulation is assured by the use of the
processor’s JTAG interface—the emulator does not affect target
system loading or timing.
In addition to the software and hardware development tools
available from Analog Devices, third parties provide a wide
range of tools supporting the Blackfin processor family. Hard-
ware tools include Blackfin processor PC plug-in cards. Third
party software tools include DSP libraries, real-time operating
systems, and block diagram design tools.
DESIGNING AN EMULATOR COMPATIBLE
PROCESSOR BOARD
The Analog Devices family of emulators are tools that every sys-
tem developer needs to test and debug hardware and software
systems. Analog Devices has supplied an IEEE 1149.1 JTAG
Test Access Port (TAP) on each JTAG processor. The emulator
uses the TAP to access the internal features of the processor,
allowing the developer to load code, set breakpoints, observe
variables, observe memory, and examine registers. The proces-
sor must be halted to send data and commands, but once an
operation has been completed by the emulator, the processor
system is set running at full speed with no impact on system
timing.
To use these emulators, the target board must include a header
that connects the processor’s JTAG port to the emulator.
For details on target board design issues including mechanical
layout, single processor connections, multiprocessor scan
chains, signal buffering, signal termination, and emulator pod
logic, see the EE-68: Analog Devices JTAG Emulation Technical
Reference on the Analog Devices web site (www.analog.com)—
use site search on “EE-68.” This document is updated regularly
to keep pace with improvements to emulator support.
Rev. 0 | Page 15 of 56 | March 2004