English
Language : 

ADA4500-2_12 Datasheet, PDF (1/24 Pages) Analog Devices – 10 MHz, 14.5 nV/√Hz, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifier
Data Sheet
10 MHz, 14.5 nV/√Hz, Rail-to-Rail I/O,
Zero Input Crossover Distortion Amplifier
ADA4500-2
FEATURES
Power supply rejection ratio (PSRR): 98 dB minimum
Common-mode rejection ratio (CMRR): 95 dB minimum
Offset voltage: 120 µV maximum
Single-supply operation: 2.7 V to 5.5 V
Dual-supply operation: ±1.35 V to ±2.75 V
Wide bandwidth: 10 MHz
Rail-to-rail input and output
Low noise
2 µV p-p from 0.1 Hz to 10 Hz
14.5 nV/√Hz at 1 kHz
Very low input bias current: 2 pA maximum
APPLICATIONS
Pressure and position sensors
Remote security
Medical monitors
Process controls
Hazard detectors
Photodiode applications
PIN CONFIGURATION
OUT A 1
8 V+
–IN A 2 ADA4500-2 7 OUT B
+IN A 3
TOP VIEW
(Not to Scale)
6 –IN B
V– 4
5 +IN B
Figure 1. 8-Lead MSOP Pin Configuration
For more information on the pin connections, see the Pin
Configurations and Function Descriptions section
100
ADA4500-2
80 VSY = 5.0V
60
40
20
0
–20
–40
–60
–80
–100
0
1
2
3
4
5
VCM (V)
Figure 2. The ADA4500-2 Eliminates Crossover Distortion
Across its Full Supply Range
GENERAL DESCRIPTION
The ADA4500-2 is a dual 10 MHz, 14.5 nV/√Hz, low power
amplifier featuring rail-to-rail input and output swings while
operating from a 2.7 V to 5.5 V single power supply. Compatible
with industry-standard nominal voltages of +3.0 V, +3.3 V,
+5.0 V, and ±2.5 V.
Employing a novel zero-crossover distortion circuit topology, this
amplifier offers high linearity over the full, rail-to-rail input
common-mode range, with excellent power supply rejection ratio
(PSRR) and common-mode rejection ratio (CMRR) performance
without the crossover distortion seen with the traditional
complementary rail-to-rail input stage. The resulting op amp
also has excellent precision, wide bandwidth, and very low
bias current.
This combination of features makes the ADA4500-2 an ideal choice
for precision sensor applications because it minimizes errors due to
power supply variation and maintains high CMRR over the full
input voltage range. The ADA4500-2 is also an excellent amplifier
for driving analog-to-digital converters (ADCs) because the output
does not distort with the common-mode voltage, which enables
the ADC to use its full input voltage range, maximizing the
dynamic range of the conversion subsystem.
Many applications such as sensors, handheld instrumentation,
precision signal conditioning, and patient monitors can benefit
from the features of the ADA4500-2.
The ADA4500-2 is specified for the extended industrial temperature
range (−40°C to +125°C) and available in the standard 8-lead
MSOP and 8-lead LFCSP packages.
Rev. A
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
©2012 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com