English
Language : 

AD8253_15 Datasheet, PDF (1/24 Pages) Analog Devices – Programmable Gain Instrumentation Amplifier
Data Sheet
10 MHz, 20 V/μs, G = 1, 10, 100, 1000 iCMOS
Programmable Gain Instrumentation Amplifier
AD8253
FEATURES
Small package: 10-lead MSOP
Programmable gains: 1, 10, 100, 1000
Digital or pin-programmable gain setting
Wide supply: ±5 V to ±15 V
Excellent dc performance
High CMRR: 100 dB (minimum), G = 100
Low gain drift: 10 ppm/°C (maximum)
Low offset drift: 1.2 μV/°C (maximum), G = 1000
Excellent ac performance
Fast settling time: 780 ns to 0.001% (maximum)
High slew rate: 20 V/μs (minimum)
Low distortion: −110 dB THD at 1 kHz,10 V swing
High CMRR over frequency: 100 dB to 20 kHz (minimum)
Low noise: 10 nV/√Hz, G = 1000 (maximum)
Low power: 4 mA
APPLICATIONS
Data acquisition
Biomedical analysis
Test and measurement
GENERAL DESCRIPTION
The AD8253 is an instrumentation amplifier with digitally
programmable gains that has gigaohm (GΩ) input impedance,
low output noise, and low distortion, making it suitable for
interfacing with sensors and driving high sample rate analog-to-
digital converters (ADCs).
It has a high bandwidth of 10 MHz, low THD of −110 dB, and
fast settling time of 780 ns (maximum) to 0.001%. Offset drift and
gain drift are guaranteed to 1.2 μV/°C and 10 ppm/°C, respectively,
for G = 1000. In addition to its wide input common voltage range,
it boasts a high common-mode rejection of 100 dB at G = 1000
from dc to 20 kHz. The combination of precision dc performance
coupled with high speed capabilities makes the AD8253 an
excellent candidate for data acquisition. Furthermore, this
monolithic solution simplifies design and manufacturing and
boosts performance of instrumentation by maintaining a tight
match of internal resistors and amplifiers.
The AD8253 user interface consists of a parallel port that allows
users to set the gain in one of two different ways (see Figure 1
for the functional block diagram). A 2-bit word sent via a bus
can be latched using the WR input. An alternative is to use
transparent gain mode, where the state of logic levels at the gain
port determines the gain.
FUNCTIONAL BLOCK DIAGRAM
DGND WR A1 A0
2
6
5
4
–IN 1
LOGIC
7 OUT
+IN 10
AD8253
8
+VS
80
3
9
–VS
REF
Figure 1.
70
G = 1000
60
50
G = 100
40
30
G = 10
20
10
G=1
0
–10
–20
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 2. Gain vs. Frequency
100M
Table 1. Instrumentation Amplifiers by Category
General Zero
Purpose Drift
Mil
Low
Grade Power
High Speed
PGA
AD82201 AD82311 AD620 AD6271 AD8250
AD8221 AD85531 AD621 AD6231 AD8251
AD8222 AD85551 AD524 AD82231 AD8253
AD82241 AD85561 AD526
AD8228 AD85571 AD624
1 Rail-to-rail output.
The AD8253 is available in a 10-lead MSOP package and is
specified over the −40°C to +85°C temperature range, making it
an excellent solution for applications where size and packing
density are important considerations.
Rev. B
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2008–2012 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com