English
Language : 

AD8222_16 Datasheet, PDF (1/25 Pages) Analog Devices – Precision, Dual-Channel Instrumentation Amplifier
Data Sheet
FEATURES
Two channels in small 4 mm × 4 mm LFCSP
Gain set with 1 resistor per amplifier (G = 1 to 10,000)
Low noise
8 nV/√Hz at 1 kHz
0.25 µV p-p (0.1 Hz to 10 Hz)
High accuracy dc performance (B grade)
60 µV maximum input offset voltage
0.3 µV/°C maximum input offset drift
1.0 nA maximum input bias current
126 dB minimum CMRR (G = 100)
Excellent ac performance
140 kHz bandwidth (G = 100)
13 µs settling time to 0.001%
Differential output option (single channel)
Fully specified
Adjustable common-mode output
Supply range: ±2.3 V to ±18 V
APPLICATIONS
Multichannel data acquisition for
ECG and medical instrumentation
Industrial process controls
Wheatstone bridge sensors
Differential drives for
High resolution input ADCs
Remote sensors
GENERAL DESCRIPTION
The AD8222 is a dual-channel, high performance instrumentation
amplifier that requires only one external resistor per amplifier
to set gains of 1 to 10,000.
The AD8222 is the first dual-instrumentation amplifier in the
small 4 mm × 4mm LFCSP. It requires the same board area as a
typical single instrumentation amplifier. The smaller package
allows a 2× increase in channel density and a lower cost per
channel, all with no compromise in performance.
The AD8222 can also be configured as a single-channel, differen-
tial output instrumentation amplifier. Differential outputs provide
high noise immunity, which can be useful when the output
signal must travel through a noisy environment, such as with
remote sensors. The configuration can also be used to drive
differential input analog-to-digital converters (ADCs). The
Precision, Dual-Channel
Instrumentation Amplifier
AD8222
FUNCTIONAL BLOCK DIAGRAM
16 15 14 13
AD8222
–IN1 1
RG1 2
RG1 3
+IN1 4
12 –IN2
11 RG2
10 RG2
9 +IN2
5 678
Figure 1.
AD8222 maintains a minimum CMRR of 80 dB to 4 kHz for all
grades at G = 1. High CMRR over frequency allows the AD8222
to reject wideband interference and line harmonics, greatly
simplifying filter requirements. The AD8222 also has a typical
CMRR drift over temperature of just 0.07 µV/V/°C at G = 1.
The AD8222 operates on both single and dual supplies and only
requires 2.2 mA maximum supply current for both amplifiers.
It is specified over the industrial temperature range of −40°C to
+85°C and is fully RoHS compliant.
For a single-channel version, see the AD8221.
Table 1. Instrumentation Amplifiers by Category1
General-
Military Low
Purpose Zero Drift Grade
Power
High
Speed PGA
AD8220 AD8231
AD620 AD8235 AD8250
AD8221 AD8290
AD621 AD8236 AD8251
AD8222 AD8293G80 AD524 AD627 AD8253
AD8224 AD8553
AD526 AD623
AD8228 AD8556
AD624 AD8223
AD8295 AD8557
AD8226
AD8227
1 See www.analog.com for the latest selection of instrumentation amplifiers.
Rev. B
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2006–2016 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com